A project funded by the United Nations Development Programme/Global Environment Facility (UNDP/GEF) and executed by the United Nations Office for Project Services (UNOPS)

Pollution Control and Other Measures to Protect Biodiversity in Lake Tanganyika (RAF/92/G32)

Lutte contre la pollution et autres mesures visant à protéger la biodiversité du Lac Tanganyika (RAF/92/G32)

Le Projet sur la diversité biologique du lac	The Lake Tanganyika Biodiversity Project has
Tanganyika a été formulé pour aider les quatre	been formulated to help the four riparian states
Etats riverains (Burundi, Congo, Tanzanie et	(Burundi, Congo, Tanzania and Zambia)
Zambie) à élaborer un système efficace et	produce an effective and sustainable system for
durable pour gérer et conserver la diversité	managing and conserving the biodiversity of
biologique du lac Tanganyika dans un avenir	Lake Tanganyika into the foreseeable future. It
prévisible. Il est financé par le GEF (Fonds	is funded by the Global Environmental Facility
pour l'environnement mondial) par le biais du	through the United Nations Development
Programme des Nations Unies pour le	Programme.
développement	-

Burundi: Institut National pour Environnement et Conservation de la Nature D R Congo: Ministrie Environnement et Conservation de la Nature Tanzania: Vice President's Office, Division of Environment Zambia: Environmental Council of Zambia

Enquiries about this publication, or requests for copies should be addressed to:

Project Field Co-ordinator Lake Tanganyika Biodiversity Project PO Box 5956 Dar es Salaam, Tanzania UK Co-ordinator, Lake Tanganyika Biodiversity Project Natural Resources Institute Central Avenue, Chatham, Kent, ME4 4TB, UK

CONTENTS:

		Page
	LIST OF TABLES, FIGURES AND APPENDICES	3
	SUMMARY	5
1	THE STUDY AREA	6
1.1	Climate	7
1.2	Topography	7
1.3	Geology	7
1.4	Objectives of the study	8
2	MATERIALS AND METHODS	8
2.1	Desk study	8
2.2	Water sampling	8
2.3	Suspended stream sediment sampling	9
2.4	Stream flow measurements	10
3	WATER SAMPLES ANALYSIS	12
3.1	Water samples analysis during fieldwork	12
3.2	Laboratory analysis of water samples	13
3.2.1	Chemical analysis	13
3.2.2	2 Stable isotope determination	13
3.3	Analysis of stream suspended sediments	13
3.3 1	Determination of stream suspended sediment concentration	13
3.3.2	2 Determination of chemical and mineral content of the stream suspended	14
	sediments	
4	RESULTS AND INTERPRETATIONS	16
4.1	Separation of hydro graph into both groundwater and surface water	16
4.2	Estimation of potential evapotranspiration	20
4.3	Estimation of the total stream suspended sediment load	22
4.4	Analysis of chemical data	27
4.5	Correlation analysis	32
4.6	Ion Ratios	33
4.7	Trend surface maps	39
5	ISOTOPE HYDROLOGY	41
6	INSTALLATION OF EQUIPMENT AND PERFORMANCE	44
	MONITORING	
7	TRAINING	44
8	MANPOWER	45
9	SUMMARY	45
10	RECOMMENDATIONS FOR FUTURE WORK	46
11	MANAGEMENT ACTIONS	47
11.1	Appropriate farming practices enhancement	47
11.2	Afforestation	47
11.3	Community based interventions	47
12	ACKNOWLEDGEMENTS	48
13	REFERENCES	49

LIST OF TABLES, FIGURES AND APPENDICES

TABLES

		Page
1.	Summary of the hydrograph separation results for the Mitumba stream	20
2.	Summary of the hydrograph separation results for the Ngonya stream	20
3.	Total sediment load for Ngonya stream	24
4.	Total sediment load for Mitumba stream	26
5.	Computed total sediment load for Ngonya stream	27
6.	Correlation Matrix for chemical data.	33
7.	The mean deuterium excess for the Ngonya and Mitumba rainfall.	42

FIGURES

	Page
1. The location of the study area	6
2. Geological map of the study area	7
3. Location of sampling points in the study area	9
4. Mitumba stream rating curve	10
5. Ngonya stream rating curve	11
6. The hydrograph for the Mitumba stream	11
7. The hydrograph for the Ngonya stream	12
8. The relationship between stream flow and sediment concentration for both	14
streams	
9. Ngonya stream sediment XRD results	15
10. The relationship between 18O and stream discharge for both streams	17
11. Stream flow separation of Mitumba stream using 18O data for selected dates	18
12. 12 Stream flow separation of Ngonya stream using 18O data for selected	18
dates	
13. The relationship between 18O and concentration of Chloride in the springs of the Mitumba watershed.	19
14. Piper trilinear diagram Streams - wet season (Jan., Feb., Mar., Apr., May,	28
Nov., Dec)	
15. Piper trilinear diagram for Streams - dry season (Jul., Aug., Jan., Feb., Oct.)	29
16. Piper trilinear diagram for lake water	30
17. Piper trilinear diagram for shallow wells	31
18. Variation of Na/Cl with Cl in the Springs	33
19. Variation of Na/Cl with Cl in the Streams	34
20. Variation of Na/Cl with Cl for the Lake Tanganyika	34
21. Variation of Mg/Na with Cl in the Springs	35
22. Variation of Mg/Na with Cl in the Streams	35
23. Variation of Mg/Na with Cl for the Lake Tanganyika	36
24. Variation of Mg/Ca with Cl in the Springs	36
25. Variation of Mg/Ca with Cl in the streams	37

26. Variation of Mg/Ca with Cl for the lake Tanganyika	37
27. Variation of $(Mg+Ca)$ /HCO3\ with Cl in the Springs	3838
28. Variation of $(Mg+Ca)/HCO3$ with Cl in the Streams	38
29. Variation of $(Mg+Ca)$ /HCO3\ with Cl for the Lake Tanganyika	39
30. Mean monthly variation in the chemical composition of the Mitumba stream	40
31. Mean monthly variation in the chemical composition of the Ngonya stream	41
32. The relationship between 18O and 2H for the Rainfall in the Mitumba	42
watershed	
33. The relationship between 18O and 2H for the Rainfall in the Ngonya	43
watershed	

APPENDICES

		Page
1.	Variation of rainfall amounts across the two watersheds	52
2.	(A&B) stream flow amounts for Ngonya and Mitumba.	55
3.	Sample Field notes	62
4.	Laboratory chemical results	78
5.	Stable isotope results	91
	5a List of all collected water samples	91
	5b Stable isotope data	102
6.	Sediment concentration	108
7.	Sediment chemical results	110

SUMMARY

Hydrological evaluation of two contrasting watersheds of more or less the same size and located adjacent to each other has been undertaken. The chemical, isotope, sediment and stream flow assessment has been conducted. The two watersheds show that the chemical character of the two streams is due to natural processes. Low values of all determined ions have been measured including those of nutrients. A magnesium bicarbonate type of water has been identified for the stream, borehole and lake waters. This supports the hypothesis that the chemical character of water in the study area is attributed to natural processes.

Hydrographic separation of stream flows using chemical and classical techniques shows that about 70% and 80% of stream component is groundwater in the Mitumba and Ngonya streams respectively. The differences in the groundwater stream components for the two streams has been attributed to strong evapotranspiration process due to the availability of heavy vegetation cover present in the pristine Mitumba watershed. But, Ngonya stream located in the impacted watershed was measured to have an order of magnitude higher suspended stream sediment load than that in the Mitumba stream. However, in both cases the stream suspended sediment load has a power function relationship with the stream discharge. Sediment analysis shows that some heavy metals emanating from the local lithology tend to form significant concentrations in the sediments. Clay minerals including smectite and kaolinite are determined to form dominant components in the stream suspended sediments.

Estimates of potential evapo-transpiration using chloride, ¹⁸O and empirical formula show that about 80% of the annual rainfall is lost through this process. The evaporation process is supported by comparison of ¹⁸O content of rainfall to that of the lake water. The mean δ ¹⁸O ‰ rainfall is determined to be - 4.5 ‰ while that of the Lake is about 3 ‰ indicating strong enrichment in the isotope due to the evaporation process. The results demonstrate that evaporation is the major process by which the lake may be losing water.

This work involved fieldwork, laboratory work, data collection and interpretation. The fieldwork included sampling of water from streams, springs, wells, and rainfall covering one water year. In addition, fieldwork involved stream sediment sampling, stream flow measurements and geological mapping. To effect stream flow measurements and rainfall collections, gauge plates and rain gauges were respectively installed in the study area.

It has been concluded that the mode of solute transport to the lake is predominantly through groundwater. It is recommended that measures to halt soil erosion through afforestation and appropriate agricultural practices be immediately undertaken in order to reduce the currently measured high sedimentation rates.

1. THE STUDY AREA

Two small contrasting watersheds were selected along the shores of Lake Tanganyika. The Mitumba watershed located at the Gombe National Park and the Ngonya watershed at the Mwamgongo village represent pristine and impacted environments respectively. The two watersheds are about the same size each with an area of about 7 km². The watersheds lie at 29° 41′E and 6° S (Figure 1).

Figure 1. The location of the study area

1.1 Climate

The study area lies in the semi humid tropical climate with mean annual rainfall and potential evapotranspiration of about 1200mm and 2000 mm respectively. The variation of rainfall amounts during the study period across the two watersheds is shown in Appendix 1a for the Mwamgongo catchment and Appendix 1b for the Mitumba catchment. The locations of the rain gauges indicated are given in Figure 3. The area experiences two seasons in each water year namely dry and wet season.

1.2 Topography

Mitumba watershed lies between altitudes of 640 m and 1450m a m s l with maximum axial length of about 5km. The Ngonya watershed lies between 640m and 1550m a. m. s. l with an axial length of 7km. Steep slopes and rocky terrain characterise both watersheds. Slopes of about 15% characterise the area.

1.3 Geology

The two watersheds are located in the Bukoban sandstones with mainly quartzitic sandstone and shales dominating the area. A few outcrops of gneissic rocks are also exposed in this area. The outcrops show a dip of less than 10° (Figure 2).

1.4 Objectives of the study

The primary objectives of this work may be summarised as follows:

1. To quantify the current sedimentation rates from both impacted and pristine Gombe watersheds.

2 To characterise the chemistry of natural waters and identify levels of pollutants and nutrients as delivered into the lake from both impacted and pristine Gombe watersheds.

3 To establish the mode of nutrient and pollutant transport into the lake

- 4 To compute the water balance of the Gombe watersheds
- 5 To derive a conceptual model for the management of Lake Tanganyika

In order to achieve the above objectives, several parameters were measured including suspended sediment load in the streams, the chemical and stable isotope content of surface and groundwater and the nature of rainfall pattern and stream flows.

2. MATERIALS AND METHODS

2.1 Desk study

The desk study involved mainly the collection of hydro - meteorological data and satellite information. The hydro meteorological data were collected from the Kigoma Water Department and Ubungo Directorate of Water Research for the Ministry of Water and Energy. The satellite information was obtained from the LTBP / LARST satellite station in Kigoma. The information is important in the understanding of the cloud pattern that produced the recorded rainfall as well as assessing the vegetation indices at different times of the year during the project field study period of 1997 / 98 and 1998 / 99 wet periods

2.2 Water sampling

Water samples were collected from rainfall, springs, wells, and streams in both the Mitumba and Ngonya watersheds. Duplicate water samples were collected for chemical and stable isotope determination. Additional duplicate water samples were collected from boreholes and wells, springs located in the Kigoma urban and rural districts. Furthermore duplicate water samples were obtained from the Malagarasi and Luiche rivers as well as rainfall. All samples were collected mainly in half litre polythene bottles. The sampling program started at the beginning of the 1997/98-water year up to the end of the 1998/99-water year. Except for a few months, sampling was conducted on a monthly basis. A total of about 400 samples were collected. The sampling points are as indicated on **Figure 3**.

2.3 Suspended stream sediment sampling

Stream sediment sampling was conducted on both Mitumba and Ngonya streams in order to determine total suspended stream sediment load in each stream. Samples were collected following standard procedures using a stream sediment sampler model DH 48 obtained from the Kigoma Water Department as discussed by Norconsult 1982 Stream sediments samples were collected at the 1/6, 3/6 and 5/6 sections of the stream span as measured from either bank of the stream during taking stream flow measurements. A total of 100 samples were collected for this purpose.

points, Rain gauge location and Catchment boundary.

Ngonya watershed was sampled in order to show how impacted watershed would highlight the hydrological effects by the current levels of deforestation in comparison to the pristine one. Sampling was conducted for two successive water years commencing with the 1997/98-water year but for the Luiche river this was undertaken for a short period during the 1998/99 -water year due to logistical reasons.

In addition, chemical and mineralogical characterisation of some selected sediment samples was undertaken. Sediment samples collected during high, medium and low flows were selected for this purpose. Sediment sample collections continued during dry season so as to be able to complete a full hydrologic cycle in order to constrain data from the last El NINO event.

2.4 Stream flow measurements

Stream flow measurements were conducted following the Area - Velocity method. Standard techniques were used in taking the flow measurement as explained by **Watson and Burnet (1995).**

However, due to the shifting nature of the Ngonya stream, surveying procedures were used in taking up flow measurement while maintaining the original zero point determined at the time of establishing the gauging station. Flow measurements were taken almost daily for the period of two complete water years except for few months due to logistical reasons. Measured stream flow amounts along with gauge heights are shown in the **Figures 4 & 5 and in Appendix 2a & Appendix 2b** for the Mitumba and Ngonya streams respectively.

Figure 4. The Mitumba stream rating curve.

Figure 5. The Ngonya stream rating curve.

Figure 6. The Hydrograph for the Mitumba stream

Figure 7. The Hydrograph for the Ngonya stream

In addition, the stream flow measurements were sometimes conducted to monitor the stream flow behaviour following a particular storm event that generated abnormally high flows.

The monitoring lasted in most cases for about 4 to 6 hrs until the stream water level reached pre-storm levels for the particular stream. Flow measurements were continued in order to complete a full water year. The stream flow results modified data collected during the last El Niño period and therefore in the construction of proper rating curve for each stream.

Stream flow data were used to construct the stream hydrograph for each stream and results are as shown in Figures 6 & 7 for Mitumba and Ngonya stream respectively.

3. WATER SAMPLES ANALYSIS

3.1 Water samples analysis during fieldwork

Analysis of water samples during fieldwork was undertaken following the availability of the relevant field probes. Some of the results as obtained during fieldwork are as shown in **Appendix 3.**

3.2 Laboratory analysis of water samples

3.2.1 Chemical analysis

Detailed chemical analysis of the water samples was undertaken at the chemical laboratory of Tanzania Bureau of Standards (TBS). A total of about 300 samples were analysed.

The following major inorganic ions were determined Na⁺, Ca²⁺, K⁺, HCO₃, SO₄²⁻ and Cl⁻. Additional analysis included the determination of NO₃, NO₂, SiO₂ and PO₄. About 300 water samples were analysed for chemical contents during the study.

The results are presented in **Appendix 4**

3.2.2 Stable isotope determination

About 200 water samples were analysed for ¹⁸O and ²H using Finnigan Mass Spectrometer available at the stable isotope hydrology laboratory of the Geosciences Department of the University of Arizona. Water samples from rainfall, springs, wells, boreholes streams and the lake were analysed for the stable isotopes. A list of the collected water samples, some of which were analysed, are as shown in **Appendix 5a** and the raw data in **Appendix 5b**.

3.3 Analysis of stream suspended sediments

3.3 1 Determination of stream suspended sediment concentration

Determination of stream suspended sediment concentration was undertaken at the Department of Geology of the University of Dar es Salaam. About 73 samples were analysed for the sediment load concentration from both the Mitumba and Ngonya watersheds, following the gravimetric technique and the results are as shown in **Appendix 6**. Sediment concentration results are reported in mg/l and their relationships with the stream flows measured at the time of sediment sampling are presented in **Figure 8**.

Figure 8. The relationship between stream flow and suspended sediment concentration for both streams.

3.3.2 Determination of chemical and mineral content of the stream suspended sediments

Determination of chemical and mineral content of the stream suspended sediments using ICP and XRD was conducted in the U.K. at the University of Greenwich.

Sediment samples were grouped into three major categories. Category one included those sediment samples that were sampled from high flows during the high rainfall (possible El NINO-related) event.

The other category includes those sediment samples that were collected during the stream recession period in the dry season.

The final category includes the sediment samples for Mitumba stream. The results for this work are as shown in **Appendix 7** (ICP analysis) and **Figure 9** (XRD).

Figure 9. Ngonya stream sediments XRD results (Those from Mitumba stream were very similar)

GODRYMW D5MEAS - Program:5-65.DQL D5MEAS - Program:5-65.DQL - Start: 5.0 Operations: Background 67.608,1.000 | Y Scale Mul 1.083 | Y Scale Mul 2.000 | Import MAPRIL NGONYA APRIL D5MEAS - Program:5-65.DQL - St ▼79-1570 (C) - Kaolinite - Al2(Si2O5)(OH)4 - Y: 3.43 % - d x by: 1. - WL: 1.54056 - 0 - I/IC PDF n.a. - I/I
 ▼74-1732 (C) - Vermiculite - Mg3Si4O10(OH)2 - Y: 3.38 % - d x by: 1. - WL: 1.54056 - 0 - I/IC PDF n.a.
 ▲ 19-1184 (I) - Albite, ordered - NaAISi3O8 - Y: 2.86 % - d x by: 1. - WL: 1.54056 - 0 - I/IC PDF n.a. - I/IC

Operations: Y Scale Add 1000 | Background 67.608,1.000 | Import MGJANDEC NGOAYA JAN/DEC D5MEAS - Program:5-65.DQL D5MEAS - Program:5-65.DQL Operations: Y Scale Add 1000 | Y Scale Add 1000 | Background 67.608,1.000 | Import

▼46-1045 (*) - Quartz, syn - SiO2 - Y: 84.46 % - d x by: 1. - WL: 1.54056 - 0 - I/lc PDF n.a. - I/lc User n. ▼76-0668 (C) - Muscovite 2M1 - K2AI4(Si6AI2O20)(OH)4 - Y: 6.34 % - d x by: 1. - WL: 1.54056 - 0 - I/l

4. RESULTS AND INTERPRETATIONS

4.1 Separation of hydrograph into both groundwater and surface water

Hydrograph analysis following classical, chemical and isotope methods was conducted.

Classical method was undertaken following the formula as reported by Fetter (1995).

 $\mathbf{Q}_{t} = \mathbf{Q}_{0} * \mathbf{e}^{-\mathrm{at}}$

Where

Qt is the stream flow after time t of recession

 Q_0 is the initial stream flow before time t of recession

a is the recession constant.

The results show that about 70% and 80% of total stream flow is groundwater component in the Mitumba and Ngonya streams respectively. A Horton recession constant of about 0.095/day was computed implying a greater groundwater component in the total stream flow.

The relationship between $\delta^{18}O$ ‰ and stream discharge for both streams shows that the stream discharge increases as the $\delta^{18}O$ ‰ decreases (Figure 10).

Figure 10. The relationship between δ ¹⁸O ‰ and stream discharge for both streams.

The relationship implies that at high flows surface runoff forms a major component in the total stream flow. However a low positive correlation shown by the trend line implies that the amount of stream discharge does not entirely influence the δ ¹⁸O ‰ of the stream flows. Mixing of different water components in the stream flows might be influencing the stable isotope character of the stream discharge.

Stream flow separation using both Cl and ¹⁸O data has been undertaken for both streams.

Groundwater flow separation calculations using the formula after Jones and Pinder (1966)

$$\therefore \mathbf{Q}_{gw} = \mathbf{Q}_{tr} * \left(\frac{\mathbf{C}_{tr} - \mathbf{C}_{dr}}{\mathbf{C}_{gw} - \mathbf{C}_{dr}}\right) \% \text{ was followed.}$$

Where:

 $\begin{array}{l} Q_{gw} = \mbox{groundwater \% component} \\ Q_{tr} = \mbox{total stream flow} \\ C_{tr} = \mbox{Cl (in ppm) or }^{18}\mbox{O content of total stream flow} \\ C_{dr} = \mbox{Cl or }^{18}\mbox{O content of direct runoff (rainfall taken to represent direct runoff)} \\ C_{gw} = \mbox{Cl (in ppm) or }^{18}\mbox{O content of base flow} \end{array}$

Results for selected dates using ¹⁸O show that the percentage of groundwater component varies from 10 % to 100 % for the Mitumba stream while it varies from 30 % to 100 % for the Ngonya stream as shown in Figures 11 & 12 respectively. The minimum groundwater percentage component of the total stream flow in both cases is obtained during high stream flows and vice versa.

Figure 11. Stream flow separation of Mitumba stream using ¹⁸O data for selected dates

Figure 12. Stream flow separation using ¹⁸O data for Ngonya stream on selected dates.

However, about 70 % and 80% of the total stream flow is dominated by groundwater for Mitumba and Ngonya streams respectively. The lower groundwater component in the Mitumba stream than Ngonya is explained to be due to high vegetal cover present in the Mitumba watershed that favours strong losses of groundwater through the process of evapo-transpiration.). This could also show the differences in the groundwater retention capacities between the two streams. The ratio of the high to low flow shows the Mitumba stream to have higher groundwater retention capacity than the Ngonya one.

The relationship between the Cl and δ^{18} O data from the springs in the Mitumba watershed show constant values in the δ^{18} O values with increasing concentration of chloride (**Figure 13**). The relationship suggests a strong transpiration process to be taking place in the study area since the phenomenon results in water losses while concentrating the solutes leaving both the ¹⁸O and ²H isotopes unaffected.

Figure 13. The relationship between δ ^{18}O and [Cl] in the springs of the Mitumba watershed.

The percentage of groundwater component results obtained from Cl and δ^{18} O data agree well with those derived from classical stream hydrograph separation technique for both streams as shown on **Tables 1 & 2** for Mitumba and Ngonya streams respectively.

Stream flow component	Wet season (Nov 97-May 98		Dry season (May	98 - Oct 98)
	$Q (m^3/y) * 10^6$	%Q	$Q (m^3/y) * 10^6$	%Q
Surface runoff	1.762	53	0.365	26
Groundwater Flow	1.54	47	1.015	74
Recession constant A * (day ⁻¹)	5.58 * 10	- ³ day ⁻¹	9.35 * 10 -3	day ⁻¹

 Table 1
 Summary of the hydrograph separation results for Mitumba stream.

Recession Constants	Mitumba catchment	Ngonya catchment
Horton's constant (a) day ⁻¹	9.35×10^{-3}	8.35 x 10 ⁻³
Barnes constant K day ⁻¹	$1.009 \ge 10^{-3}$	$1.008 \ge 10^{-3}$

HYDROGRAPH SEPARATION BY USING [Cl⁻¹].

Table 2. Summary of the results for the Ngonya stream

Stream flow component	Wet season (Nov 97 - May 98		Dry season (May	98 - Oct 98)
	$Q (m^3/y) * 10^6$ %Q		$Q (m^3/y) * 10^6$	%Q
Surface runoff	1.73	30	0.537	20
Groundwater Flow	3.46	70	2.363	80
Recession constant (a) (day ⁻¹)	$6.74 * 10^{-3} day^{-1}$		8.35 * 10 -3	day ⁻¹

4.2 Estimation of potential evapotranspiration

Estimation of the potential evapo - transpiration in the study area is also undertaken by use of Chloride and Oxygen 18 data following the formula discussed by **Igbal** (**1996**) as shown below.

However, stable isotope method using ¹⁸O data was undertaken following the chloride formula, because evaporation is considered to be the major process that causes fractionation of the stable isotopes as it is for the concentration of chloride content.

Similarly, ET was calculated also as shown below by use of 18 O data following the water balance equation.

 $P = ET + R + G + \Delta S \cong ET + Q$ Where, P is precipitation input to the watershed

- ET is evapotranspiration
- R is surface runoff plus interflow
- G is groundwater recharge
- ΔS is annual change in storage
- Q is measured streamflow

$$M_{t} = \sum_{n=1}^{nt} P_{n} [Cl_{P}]_{n} = \int_{0}^{t} R [Cl_{R}](t) dt$$

Where,

- M_t total chloride input to the watershed per unit area in time t (mol l⁻²)
- P_n amount of precipitation in each event, n(l)
- $[Cl_p]$ chloride concentration in each precipitation event, n(mol l⁻¹)
- t integration period chosen, where it is assumed that chloride input to the watershed equals output for the period(t)

 $R[Cl_R](t)$ instantaneous product of runoff volume and chloride concentration (mol t⁻¹)

$$M_{t} = \int_{0}^{t} R[Cl_{R}](t) dt \cong (P - ET) * [Cl_{B}]$$

Where

 C_B is the concentration of chloride in base flow Then

$$M_t \cong (P - ET) * [Cl_B]$$

Rearranging,

$$ET = \frac{P[Cl_B] - M_t}{[Cl_B]} = \frac{P[Cl_B] - [Cl_P]}{[Cl_B]}$$

$$P = \frac{Q}{(1 - (([Cl_B] - [Cl_P]) / [Cl_B]))}$$

$$E_{T} = \frac{[Cl_{B}] - [Cl_{P}]}{Cl_{B}} * (P)$$

$$E_{T} = \left[\frac{{}^{18}O_{B} - {}^{18}O_{P}}{{}^{18}O_{B}}\right] * (P)$$

Where;

 E_t = Potential Evapotranspiration.

 $Cl_B = Chloride \ concentration \ of \ Baseflow \ in \ mg/l.$

 $Cl_{p} = Chloride \ concentration \ of \ Precipitation \ in \ mg \ P = Mean \ annual \ precipitation \ in \ mm.$ $^{18}O_{B} = \mathbf{d}^{-18}O \ of \ Baseflow = -3.0\%o.$ $^{18}O_{p} = \mathbf{d}^{-18}O \ of \ Precipitation = -5.0\%o$ P = 1300ml $[Cl_{P}] = 5.00mg/l$ $[Cl_{P}] = 26.00mg/l$ $E_{T} = \frac{[Cl_{B}] - [Cl_{P}]}{Cl_{B}} * (P)$ $E_{T} = [\frac{26-5}{26}] * 1300mm$

The results show potential evapotranspiration in the study area to be about 1050mm. The computed E_t following the two methods is about 80% of the total precipitation.

The classical method after Turc (1955) as reported by Fetter (1994) following the formula below, resulted in the Et of about 1068mm which is 82% of the mean annual precipitation of 1300 mm

$$Et = \frac{P}{\left[0.9 + \left(\frac{P}{L}\right)^2\right]^{\frac{1}{2}}}$$

where;

Et = evapotranspiration in mm per year

P = mean annual precipitation in mm

 $L = 300 + 25T + 0.05T^3$ (where T is the mean air temperature in ^oC = 25)

The results from the three methods show that potential evapo - transpiration in this area is less than the long term mean annual precipitation, implying that the area experiences a semi humid tropical climate.

4.3 Estimation of the total stream suspended sediment load

The total stream suspended sediment load was computed by use of the following Approach,

$$C_{m} = Q * \left[\frac{q_{1}c_{1} + q_{2}c_{2} + q_{3}c_{3} + \dots + q_{n}c_{n}}{\sum (q_{1} + q_{2} + q_{3} + q_{4} + \dots + q_{n})} \right]$$

Where

 q_1 , q_2 ... q_n are the stream flow amounts in m³/s as measured at each sampling position within the river span.[Normally taken at 1/6, 1/2, and 5/6 of the stream's width as measured from either bank of the stream]. The results of the measured sediment concentration in the Ngonya and Mitumba streams are as shown in **Tables 3 & 4** respectively (where total flow is average flow for whole day).

 C_1 , C_2 ... C_n are the corresponding sediment concentration in mg/l as measured at each sampling position.

 C_m is the computed weighted mean in mg/l of the total stream suspended sediment discharge at a given time. The results of the computation of the total suspended sediment load are as shown in the Ngonya stream are as shown in **Table 5**.

Sediment concentration was determined from both pristine and impacted watersheds with high sediment discharges measured as expected in the latter one.

However, the relationship between the total sediment load and stream flow for the streams in both watersheds resulted in an exponential function of discharge as shown in **Figure 8**.

According to Yang (1996), the amount of total sediment transported by a stream or river hence inflow to a reservoir depend on the amount of sediment yield produced by the upstream watershed. In addition, he summarised the factors that determine the sediment yield of a watershed as being, rainfall amount and intensity, soil type and geological formation. Furthermore, groundcover, land use, topography, upland erosion rates, drainage network density, slopes, shape size and alignment of channels are additional factors.

Finally, runoff, sediment characteristics, such as grain size and mineralogy, channel hydraulic characteristics may also determine the total amount of sediment transport in a given channel. Observation shows that in this area, the amount of sediment increases with the increase of the intensity of rainfall. In additional for the same amount of stream flow and rainfall, more suspended sediment transport was measured in the Ngonya stream draining an impacted watershed than in the Mitumba stream flowing across the heavily vegetated watershed in the Gombe national Park.

The results demonstrate the variation in the degree of erodability of the soils in each watershed with the most easily eroded soil being that in the impacted watershed and vice versa for the pristine one.

Sample No.	$Q(m^3/s)$	Sediment	Average	Total flow
1		Conc.(mg/l)	Sediment	m ³ /sec
			conc.(mg/l)	
97/12/01Mw	0.006	3287.63		
97/12/02Mw	0.011	2904.73		
97/12/03Mw	0.001	623.94	2905.63	0.260
97/12/04Mw	-	117.50		
97/12/05Mw	-	112.76		
97/12/06Mw	-	167.63	132.63	0.260
97/12/07Mw	0.003	100.38		
97/12/08Mw	0.016	20.85		
97/12/09Mw	0.008	80.95	47.49	0.174
97/12/10Mw	0.008	77.97		
97/12/11Mw	0.018	93.94		
97/12/12Mw	0.012	83.96	87.43	0.255
98/1/13Mw	0.026	460.00		
98/1/14Mw	0.027	-		0.509
98/1/15Mw	0.021	4020.17	1302.48	
98/1/16Mw	0.016	2416.30		
98/1/17Mw	0.036	1608.31		0.733
98/1/18Mw	0.033	1623.45	1766.28	
98/1/19Mw	0.093	4536.65		
98/1/20Mw	0.080	17544.34		1.024
98/1/21Mw	0.013	4723.35	10044.40	
98/1/22Mw	0.012	6502.68		
98/1/23Mw	0.065	7061.80	6128.09	0.892
98/1/24Mw	0.015	1782.33		
98/4/25Mw	0.107	8617.04		
98/4/26Mw	0.104	8669.75	8564.74	1.417
98/4/27Mw	0.023	7846.67		
98/4/28Mw	0.073	579.83		
98/4/29Mw	0.029	227.33	397.71	0.868
98/4/30Mw	0.024	49.64		
98/4/31Mw	0.082	2437.22		
98/4/32Mw	0.046	162.00	1346.34	0.889
98/4/33Mw	0.030	180.91		
98/4/37Mw	0.135	8252.50		
98/4/38Mw	0.026	1139.60	6430.65	0.867
98/4/39Mw	0.039	3651.59		
98/4/46Mw	0.023	39.10		
98/4/47Mw	0.013	24.59	32.48	0.175
98/4/48Mw	0.004	20.38		
98/9/49Mw	0.008	9.23		
98/9/50Mw	0.008	9.60	9.81	0.104
98/9/51Mw	0.003	11.92		
98/10/55Mw	0.008	15.91	11.50	0.404
98/10/56Mw	0.010	8.57	11.63	0.101

Table 3Total sediment load for Ngonya Stream

98/10/57Mw	0.004	10.74		
98/10/58Mw	0.035	289.29		
98/10/59Mw	0.009	306.36	278.08	0.192
98/10/60Mw	0.013	228.33		
98/12/61Mw	0.005	1114.85		
98/12/62Mw	0.010	653.02	981.43	0.107
98/12/63Mw	0.011	1219.35		
98/12/64Mw	0.006	950.56		
98/12/65Mw	0.013	845.81	869.74	0.125
98/12/66Mw	0.011	853.94		
98/12/67Mw	0.009	6061.07		
98/12/68Mw	0.021	5274.72	5559.91	0.184
98/12/69Mw	0.014	5665.51		

Sample No.	Q(m3/s)in	Sediment	Average sediment	Total flow
	section	conc.(mg/l)	concentration(mg/l)	m ³ /s
98/4/34GO	0.011	16.52		0.318
98/4/35GO	0.023	-	12.77	
98/4/36GO	0.028	21.79		
98/4/40GO	0.014	72.00		
98/4/41GO	0.025	47.71	61.18	0.375
98/4/42GO	0.036	66.33		
98/4/43GO	0.003	20.00		
98/4/44GO	0.004	11.37	13.82	0.094
98/4/45GO	0.010	12.94		
98/4/52GO	0.006	8.39		
98/4/53GO	0.003	17.00	10.87	0.059
98/4/54GO	0.004	10.00		

Table 4 TOTAL SEDIMENT LOAD FOR MITUMBA STREAM

Fluctuations of total suspended sediment load have been observed and are attributed to the following reasons:

- (i) Erratic supply from catchment
- (ii) Fluctuation of a dominant factor (i.e. Unit stream power) within the stream water flow system.
- (iii) Inconsistency in taking and calculating the stream discharges, mean velocity, cross-sectional area, channel width, mean depth at verticals where suspended sediment samples were taken (According to the modified Einstein procedure of sediment concentration determination (Yang, 1996)
- (iv) Different catchment conditions at the time of storm events and measurements e.g. differential sediment coherence.

No	Sample No.	Average Discharge m ³ /s	Average Sediment Concentration mg/l
Ι	98/10/58Mw		
	98/10/59Mw	0.192	278.08
	98/10/60Mw		
II	98/10/67Mw		
	98/10/68Mw	0.184	5559.91
	98/10/69Mw		
III	98/10/55Mw		
	98/10/56Mw	0.101	11.63
	98/10/57Mw		
IV	98/10/61Mw		
	98/10/62Mw	0.107	981.43
	98/10/63Mw		
V	98/10/19Mw		
	98/10/20Mw	1.024	10044.40
	98/10/21Mw		
VI	98/10/25Mw		
	98/10/26Mw	1.417	8564.74
	98/10/27Mw		

Table 5 COMPUTED TOTAL SEDIMENT LOAD FOR NGONYA STREAM.

4.4 Analysis of chemical data

The chemical data were computed for the ion balance in order to determine the degree of accuracy of the laboratory work before further interpretations were carried out.

The results show that ion imbalance varied from 1 to 10 %. However, water samples having low ion concentration have higher values of ion imbalance than 10 % implying to be the most inaccurate ones. This is attributed to poor detection limits by the measuring instruments. Low concentration determined for the nutrients including NO_3^- , SiO₂ and PO_4^- indicate lack of significant anthropogenic sources (**Appendix 4**), possibly implying natural sources of these key plant nutrients.

The chemical data obtained were interpreted in order to determine the factors that bring about the chemical character of both surface and groundwater in the study area including Lake Tanganyika.

Data analysis using Piper trilinear diagram indicates Magnesium Bicarbonate type of water to be the most dominant in both surface and groundwater. Figures 14, 15, 16 & 17.

Figure 14. Piper trilinear diagram Streams - wet season (Jan., Feb., Mar., Apr., May, Nov., Dec)

Figure 16. Piper trilinear diagram for lake water

9 296

The results show that the chemical character of water in the Lake Tanganyika reflects that of the inflowing streams and rivers. However, Cohen. *et. al.* (1997) explained that the chemical character of water in Lake Tanganyika is due to the waters coming from the hot springs located in some places on the lake bed. This may be unlikely because the contribution of water by the hot springs located on the lake bed to the total volume of water into the lake is insignificant in comparison to that coming from rivers and streams.

4.5 Correlation analysis

Correlation analysis using multivariate statistics shows salinity of both surface and groundwater to be highly positively correlated with Na^+ , K^+ , and HCO_3^- but to a lesser extent with Mg^{2+} , and Cl^- (**Table 6**). The correlation results suggest that the chemical character of water in this area is caused by water - rock interaction. The reaction of albite minerals that were determined in the sediment samples could indicate one of the possible minerals that are reacting to form the well correlating ions as per the following chemical reaction:

 $2.33 \text{ NaAlSi}_2O_8 + 8.64H_2O + 2CO_2 = \text{Na}0.33\text{Al}_2.33\text{Si}O_3.67O_{10}.(OH)_2 + 2\text{Na}^+ + 2\text{HCO}_3^- + 3.32\text{H}_2\text{Si}O_4.$

Similarly Na^+ , K^+ , and HCO_3^- correlate very well, indicating that these ions have a common source and/or the same process influences the concentrations in the stream.

Silica was determined to be the most dominant nutrient in comparison to phosphates and nitrates. The results show that anthropogenic factors do not influence the chemical character of the water in this area, because silica is a product of the reaction of silicate minerals with water. However, only a few samples were analysed for silica and hence could not be used in the correlation analysis. The concentration of the Na⁺, & K⁺, tends to be smaller than Mg²⁺ in waters, this is attributed to the cation exchange process that depletes the Na⁺, and K⁺ ions from solution in favour of the Mg²⁺ enrichment from the soil matrix.

Variable	Temp	pН	EC	Cl	Ca	Mg	SO4	HCO3	Fe	K	Na
Temp	1.00										
pН	0.16	1.00									
EC	0.11	0.76	1.00								
Cl	0.15	0.21	0.37	1.00							
Ca	0.13	0.31	0.26	0.19	1.00						
Mg	0.15	0.37	0.31	0.21	0.77	1.00					
SO4	0.12	-0.01	0.09	0.22	0.00	-0.06	1.00				
HCO3	0.13	0.77	0.95	0.27	0.29	0.37	-0.00	1.00			
Fe	0.08	-0.09	-0.10	0.02	-0.07	-0.09	0.71	-0.10	1.00		
K	0.11	0.75	0.94	0.26	0.20	0.3	-0.01	0.95	-0.06	1.00	
Na	0.10	0.75	0.94	0.42	0.25	0.33	0.01	0.92	-0.1	0.93	1.00

Table 6 Correlation matrix for chemical data

4.6 Ion Ratios

The Na⁺:Cl⁻ ratios were determined from various water sources and resulted in decreasing values that are lower than 1.0 with increasing chloride concentrations (**Figures 18 & 19**). The chloride concentration is apparently taken as a measure of salinity due to its conservative nature. The ratio results indicate that chloride is being added to the aquatic system much faster than Na⁺. Alternatively, Na⁺ could be decreasing in the system through cat ion exchange processes, as salinity of water increases.

Figure 18 Variation of Na/Cl with Cl in springs

Figure 19 Variation of Na/Cl with Cl in streams

However, the ratio of Na^+ / Cl^- for the Lake Tanganyika waters is determined to vary from more than 5.0 to lower values than 3.0 at low and high concentrations of chloride respectively (**Figure 20**).

The results suggest that at low chloride concentration addition of Na⁺ probably resulting from the dissolution of plagioclase minerals brought about into the lake as stream sediments may be taking place. Sediment analysis using XRF and ICP techniques result in high concentration of albite minerals whose sodium content is high (**Figure 9 and Appendix 7**)

Figure 20 Variation of Na / Cl with Cl for Lake Tanganyika

However, at high chloride concentrations of the lake water, cation exchange processes may be predominantly taking place thus resulting in decreased values of Na^+ , hence the low calculated ratios.

The cation exchange process may further be supported by the ratio of the Mg^{2+} / Na^+ which has almost constant values at various chloride concentrations as determined from various water sources (**Figures 21 and 22**). The constant values suggest that the same processes regulating the concentration of the two ions operate at all levels of salinity as reflected by chloride concentrations and at all times of the year.

Figure 21 Variation of Mg / Na (y axis) with Cl in the springs

Figure 22 Variation of Mg / Na with Cl in the Streams

However, the higher ratio of Mg^{2+} / Na^+ than 1.0 from the lake water indicates that $[Mg^{2+}]$ increases in the lake as $[Na^+]$ decreases, possibly due to cation exchange processes (**Figure 23**).

Figure 23 Variation of Mg / Na with Cl for Lake Tanganyika.

The results demonstrate further that natural processes may be responsible for the overall chemical character of the water in the study area.

The ratio of Mg^{2+} / Ca^{2+} for all the water samples collected from various water sources resulted in higher values than 1.0, suggesting that Mg^{2+} rich minerals are dissolving in the water in this area (**Figures 24, 25 & 26**). This is supported by the underlying geology in this area being dominated by dolomitic limestone.

Figure 24. Variation of the Mg / Ca with Cl for the Springs.

Figure 25. Variation of Mg / Ca with Cl for the Streams

Figure 26. Variation of the Mg / Ca with Cl for Lake Tanganyika

Similarly, the ratio of $[Mg^{2+} + Ca^{2+}] / HCO_3^-$ in various water sources resulted in values higher than one (**Figures 27, 28 & 29**). The results show that dissolution of dolomitic limestone is not the only source of Mg^{2+} and Ca^{2+} into the natural water in this area. Therefore, dissolution of amphiboles might also be contributing a significant amount of the ions into the water along with cation exchange process. The amphibole gneisses have been identified to form part of the geology of the study area (**Figure 2**). These rocks have significant content of amphiboles that could be dissolving to form the observed chemical character of the water as per thefollowing chemical reaction:

 $Ca_2 Mg_5 Si_8 O_{22}(OH)_2 + 14 CO_2 + 22H_2 O = 2Ca^{2+} + 5 Mg^{2+} + 14HCO_3^{-} + 8 Si(OH)_4$

Figure 27. Variation of the $(Mg + Ca)/HCO_3$ with Cl for the springs

Figure 28 Variation of the (Mg + Ca)/HCO₃ with Cl for the streams

Figure 29 Variations of [Mg + Ca] / HCO₃ with Cl for Lake Tanganyika.

It may be summarised that the ratios show that the chemical character of the water in the study area is mainly due to natural processes.

4.7 Trend surface maps

These were plotted and show that the chemical content of stream flow varies insignificantly with the catchment topography. This is because there is minor, if any, anthropogenic causes of chemical character of the stream surface runoff. These maps are available from the author.

In addition, streams flow fast enough in this area (at least higher in the watershed) that no water rock interaction would take place along the stream channel.

Mean monthly variation of chemical composition of water in the Mitumba and Ngonya watersheds show the chemical composition to have similar trends in the two watersheds (Figures 30 & 31). In general, TDS is observed to decrease during the months in which stream flow increases as this is the period of high rainfall. Rapidly flowing fluxes of surface runoff generated by high rainfall results in decreased water rock contact time. The increase of TDS in the period of decreased rainfall, that results in decreased runoff is attributed to the increase in contact time between the rock and the water thus enabling effective dissolution process to take place and also evaporation effect to be significant.

Figure 30. Mean monthly variation in the chemical composition of the Mitumba stream. Concentrations in mg/l.

However, waters from the Ngonya watershed are higher in concentration of various ions than waters from the Mitumba watershed. The difference in concentration is attributed to the degree of vegetal cover. Vegetation stabilises the soil and prevents physical erosion. Vegetation cover also causes fresh rocks not to be exposed at the surface, thus causing less contact between the rainwater and the rocks, hence resulting in decreased chemical weathering.

Therefore, as a consequence of deforestation, the rocks in the Ngonya watershed are always exposed at the surface and therefore easily interacting with rainwater. This explains why there is high concentration in various ions in the Ngonya stream waters compared to that in the Mitumba watershed, which is well covered by plant litter.

Magnesium is observed to be the most dominant cation along with the bicarbonate anion during the entire water year (Figures 30 & 31). This implies that natural processes are responsible for the chemical character of the water in the two watersheds as there are no anthropogenic sources of Mg in this area and the ions are naturally being introduced into the aquatic environment independent of seasonal variation.

Figure 31. Mean monthly variation in the chemical composition of the Ngonya stream. Concentrations in mg/l.

5. ISOTOPE HYDROLOGY

The isotope data are reported according to Craig (1961) and reported using the V SMOW standard as shown below.

$$\boldsymbol{d}^{18}O \, smow = \left[\frac{\binom{18}{18}O / \frac{16}{16}O_{sample} - \frac{18}{18}O / \frac{16}{16}O_{s \tan dard}}{\binom{18}{18}O / \frac{16}{16}O_{s \tan dard}}\right] * 10^{-3}$$

The relationship between δ^{18} O and δ^{2} H of precipitation resulted in the local meteoric equation of δ^{2} H = 7.499 δ^{18} O + 12.11. Similar results have been obtained for the rainfall collected in the Mitumba and Ngonya watersheds as shown in the **Figures 32 & 33**.

The slope of the equation indicates that precipitation in this area has undergone evaporation process implying that either precipitation originates from a distant place accompanied by strong winds and or from high placed clouds. Satellite data indicate that the clouds forming the precipitation during the study period are predominantly Cumulus, broken clouds that normally form at an altitude of about 3000 m - 10,000 m above sea level. These types of clouds form high intensity rainfall accompanied with strong winds.

Figure 32 The relationship between δ ^{18}O (y-axis) and δ 2 H (x-axis) for the rainfall in the Mitumba watershed.

Figure 33 The relationship between δ ¹⁸O (y-axis) and δ ² H (x-axis) for the rainfall in the Ngonya watershed.

Isotope content of precipitation ranges from -3.5‰ to -5.5‰ for δ ¹⁸O. The mean deuterium excess of about 13‰ shown in **Table 7** computed for the precipitation indicates a high moisture deficit, i.e. low relative humidity in the atmosphere just above the ocean from which the vapours forming the precipitation was formed.

Source of mean rainfall values	δ ¹⁸ O ‰	$\delta^2 H \%$	δ^2 H ‰ Excess
Gombe	-3.25	-14.30	11.7
Mwamugongo	-2.69	-6.59	15.0
Mean for both rainfall sources	-2.92	-9.70	13.6

Table 7 The mean deuterium excess for the Ngonya and Mitumba rainfall.

Comparison of the mean stable isotope content of precipitation and stream waters to that of the lake water suggests that strong evaporation may account for a big percentage in the water losses from the lake. Computation of the actual evapo - transpiration for the lake using ¹⁸O data resulted in about 1080mm. This is about 90% of mean annual precipitation of 1200mm, implying that evaporation is the major mechanism by which the lake water is

lost. In addition, the isotope data show that evaporation process may also significantly contribute to the observed chemical character of the lake.

Since the mean residence time of water in the lake Tanganyika is about 1000 years (Cohen *et. al.* 1997), then enrichment in ¹⁸O data from water samples collected in the hypolimnion indicate that about 1000 years ago the lake experienced a dry climate. The isotope content of shells collected from the cores dated with same age support this observation (Marcel 1992, Cohen *et al.* 1997).

6. INSTALLATION OF EQUIPMENT AND PERFORMANCE MONITORING

New manual rain gauges were installed at different altitudes in the Study areas. Four and five rain gauges were installed at Mitumba and Ngonya watersheds respectively. Several rain gauges were installed in each watershed in order to monitor variability of rainfall amounts with altitude.

Two automatic tipping bucket rain gauges were installed one in each watershed adjacent to the first manual rain gauge in each watershed in order to track the rainfall intensity in this area. However, the automatic rain gauges for some reason recorded abnormally high rainfall in a day and/or in a single event that is equivalent to an amount collected in several years. Thus indicating that something was wrong in the recording by these gauges, consequently collected data have been discarded in the interpretation.

Furthermore, gauge plates obtained from the Kigoma Water Department were installed at the zero level position (deepest point on stream bed) in each stream about 50m upstream of the Lake confluence with each stream. Gauge plates were installed in order to monitor changes in the stream water levels in order to deduce the stream flow rates from the stream constructed rating curves.

7. TRAINING

Mr. C. Rubabwa was shown how to conduct stream flow measurements along with sediment sampling; Mr Rubabawa continues to be trained at the University of Dar - es - Salaam where he is conducting his M.Sc. studies.

Dr David Dettman systematically explained how to use Delta S Finnigan Mass Spectrometer to Hudson Nkotagu during the determination of ²H and ¹⁸O from water samples at the University of Arizona.

The Assistants obtained from the Mwamugongo and Gombe village were taught how to take gauge readings and rainfall data. The training was successful as they managed to take some of the data used in this work without supervision.

8. MANPOWER

The following staff members	were involved in different capacities during the project.
(1) Mrs. K. Mbwambo	Analytical chemist [Tanzania Bureau of Standards]
(2) Mr. C. Rubabwa	Geologist (M Sc. student at UDSM) [Ministry of Water]
(3) Mr. T. Mpyalimi	Technician (Hydrology) [Ministry of Water]
(4) Mr. H. Mdangi	Gombe Ranger [Gombe National Park / TANAPA]
(5) Mr. S. Shemudoe	Gombe Ranger [Gombe National Park / TANAPA]
(6) Mr. S. Haruna	Mwamugongo village resident [Mwamugongo village]
(7) Mr. Chale	R/V Echo Captain [TAFIRI]
(8) Mr. Chata	R/V Echo Crew [TAFIRI]
(9) Mr. Ibrahim	R/V Echo Crew [TAFIRI]
(10) Dr. G. Patterson	Sediment special study Co-ordinator [NRI / U.K.]
(11) Mr O. Drieu	Sediment special study Facilitator [LTBP/Mpulungu]
(12) Dr. D. Dettman	Stable isotope Geochemist [University of Arizona]
(13) Dr. H. Nkotagu	Hydrologist [University of Dar Es Salaam]

9. SUMMARY

The main findings of this work may be summarised as follows;

- The impacted watershed has an order of magnitude higher than the pristine environment in the current suspended sediment transport rates.
- Groundwater forms about 70% and 80% of the total stream flow in form of base flow for the Mitumba and Ngonya streams respectively.
- Low levels of nutrients and chemical pollutants are at the moment being transported by the two streams.
- Groundwater plays a dominant role in the mode of nutrient and chemical pollutant transport into the lake on a long term basis through the base flow component, that forms a major part of the stream flows.
- Significant concentrations of nutrients are also transported during high flows.
- The interplay between the watershed lithology and vegetal cover forms a major role in determining the chemical character of the natural water in both watersheds.
- Insignificant anthropogenic causes, if any, are observed to influence the water quality in this area.
- From the study area, suspended sediments may be considered as the lake's major pollutant and possibly carriers of pollutants.

10. RECOMMENDATIONS FOR FUTURE WORK

Monitoring and future research

High Priority

Research

Find out to what extent sediments act as carriers of pollutants and sinks for nutrients in the lake

Establish a water quality numerical model for the lake, focused on nutrients and pollutant mass balance hydrodynamics.

Find out the relationship between current sedimentation rates and the species (Benthic and Pelagic) productivity.

Investigate to what extent the Malagarasi wetland up stream of the Malagarasi delta acts as a sink or buffer of both sediments and pollutants to the lake. Mass flux of both sediments and pollutants into the wetland then can be monitored accordingly.

Monitoring

Current sedimentation rates for major rivers of Malagarasi and Luiche.

Monitor water quality variations with season from major rivers including Malagarasi, Luiche and Lugufu.

Monitor the hydro meteorological parameters around the Malagarasi wetland.

Variability in land use patterns in the lake Tanganyika watershed.

Medium Priority

Research

To what extent does fire outbreak enhance sedimentation rates?

Quantify contributions of sediments from each sediment source to the lake.

Monitoring

Monitor the hydro - meteorological conditions in the Lake Tanganyika watershed

Monitor various pollutants (e.g. heavy metals) and general water quality from major rivers of Malagarasi, Luiche and Lugufu rivers and the lake itself.

Low Priority

Monitoring

Chemical character of precipitation above the onto the lake surface as well as in the whole catchment. The rainfall pattern in the study area originates from the Atlantic Ocean across the Congo forests. Therefore, any activity in the Congo that could result in atmospheric pollution should be monitored through chemical characterisation of rainfall.

11. MANAGEMENT ACTIONS

11.1 Appropriate farming practices enhancement.

Farming involving ridges across the slopes should be practised in the attempt to control erosion by slowing down the surface runoff. In addition, stream bank cultivation should be avoided for halting accelerated erosion.

11.2 Afforestation

This should be considered as an important management intervention, because trees slow down surface runoff, in turn reducing its erosive powers. Afforestation should be undertaken in the upstream section of the watershed. The upstream section of the watershed is a highly energetic environment where maximum erosion normally occurs. However, appropriate tree species should be planted that do not consume a lot of water per day for their growth requirement. Lack of appropriate tree species may result in the depletion of groundwater resources that sustain surface water flows during the dry season. This is supported by the contribution of groundwater component to the stream flow, which is high in the impacted watershed and slightly less in the Gombe National Park as a consequence to high evapo - transpiration losses.

It may be summarised that soil conservation methods in preventing or reducing sediment inflow to a reservoir such as Lake Tanganyika may include structural and nonstructural measures. Structural measures may involve the construction of sedimentation basin to store sediments; drop inlets and chutes to reduce gully erosion; stream bank revetment to reduce bank erosion; and sill and drop structures to stabilise the stream bed.

Nonstructural measures including watershed land treatment to reduce sheet erosion; the use of proper tillage methods, strip cropping, terracing and crop rotation; and trapping and retention of sediment by vegetative screen (reforestation) may be undertaken.

Additional benefits

Control of deforestation and actions in favour of afforestation would lead to obvious benefits in terms of production of wood and other products, land conservation, water control and conservation of forest biodiversity (including regional endemic species).

11.3 Community based interventions

For the control of sedimentation action to prevent the primary causes should be highly encouraged.

Additional comments

The LTBP has put much emphasis on the lake itself with relatively little scientific input on what is going on in the lake's catchment.

A scientific study for example on the Malagarasi wetland that potentially acts as a buffer to the lake (with an area of about $10,000 \text{ km}^2$) would have assisted very much in achieving proper management strategies for the lake. To what extent does such a huge wetland connected to one of the lake's major inflow rivers act as a sediment and pollutant sink?

In addition, could there be any species relationship between those of the lake and those in the wetland? If so in what ways?

It is strongly recommended that the data collected during the project be stored in form of a data bank electronic or otherwise so that they are easily accessible to any stakeholders. In this case it is suggested that for future research purposes and teaching, the University of Dar Es Salaam be the most suitable candidate for holding the Lake Tanganyika Environmental Data Bank.

12. ACKNOWLEDGEMENTS

This work was undertaken as part of the sediment special study of Lake Tanganyika Biodiversity Project (LTBP), a UNDP/GEF supported project. The Project was co-ordinated internationally by NRI in the U.K. and locally through the Department of the Environment in the Office of the Vice President of the United Republic of Tanzania. Several Institutions and individuals have contributed to the accomplishment of this work.

Most notably are the Vice Chancellor of the University of Dar Es Salaam and the Director Tanzania Bureau of Standards for allowing respectively the authors of this report to participate as research collaborators to the project.

The Ministry of water through both the water research Department at Ubungo and the Kigoma regional water department contributed some research materials and manpower. TANAPA authorities through the Gombe National park for providing us with assistants and free accommodation. Special thanks are due to the Kigoma regional authorities and the Mwamugongo village leaders for their corporation.

Dr G. Patterson of NRI is thanked for his participation in the initial stages of the project and for his constant encouragement and prompt provision of technical support. In addition, Dr Patterson is greatly thanked for proof reading, formating and editing the entire report.

Dr A. Menz the project co-ordinator, and his team at the LTBP PCU office in Dar Es Salaam for their total support in providing us with maximum logistical support at the time of need without which this work would never have gone this far.

Dr. K. West the Project scientific liaison officer and her team at the Kigoma LTBP office for her encouragement and making sure that all the logistical support during field work

was promptly obtained and so is Mr. O. Drieu Sediment special study facilitator and Dr. R.Duck, University of Dundee for their useful discussions.

13. REFERENCES

Anderson, H. W., 1975 Relating Sediment Yield to Watershed Variables. Trans, Geophs. Union, 38, pp 921 - 924 AGU Pergamon Press.

Ayers, H.D. and J. Ding 1967. Effects of Surficial Geology on Stream Flow Distribution in Southern Ontario - Canada. Canadian J. Earth Sciences 4, pp 187 - 197. The National Council of Canada.

Ayodeji, O.S 1992. Preliminary Characterization of Groundwater resources in Arusha M.Sc. Thesis at UDSM, PP 7 -9.

Back William and Bruce B. Hanshaw, 1965. Chemical Geohydrology. In Advances in Hydroscience, 2 Ed, V.T. Chow, pp 49 - 109. New York, Academic Press.

Boettner, E.A and Fred I. Grunder., 1968. Water Analysis by Atomic Absorption and Flame Spectroscopy. Am. Chemical. Soci; Advances in Chemistry Series; 73, pp 236 - 246, New York.

Branson, F.A and J.B. Owen., 1970. Plant Cover, Runoff, and Sediment Yield Relationships on Mancos Shale in Western Colorado. Water Resources. Res. 6, 783 - 791, American Geophysical Union.

Brown, J. A. H., 1972. Hydrological Effects of Bush fire in Catchment in North West Wales - Australia. J. Hydrology; 15, pp 77 - 79, Amsterdam (Elsevier).

Coulter, G.W., J.J. Tiercelin, R.H. Spigel and A. Mondeguer (1991) Lake Tanganyika and Its Life, pp 7 -75, Oxford University Press, New York.

Chow, V.T., 1964. Handbook of Applied Hydrology, pp 13 -1 to 22 - 1, McGraw - Hill, New York.

Cleaves, T.E., A.E. Godfrey and O.P. Brieker.' (1970). Geochemical Balance of a small Watershed and Its Geomorphic Implication. Geol. Soc. Am. Bull; 81, pp 3015 - 3032, New York.

Dyusings, J.J.H.M., J.M. Verstraten and L. Bruynzeel., 1983. The identification of Runoff sources of a Forested Lowland catchment; A chemical and statistical Approach. J. Hydrology; 64, pp 357 - 375, Amsterdam (Elsevier).

Edmunds, W.M., 1996. Geochemical Frame work for water Quality studies in Sub-Saharan Africa J. African Earth Sciences., 22, pp 385 - 389. Oxford - Elsevier.

Fetter, C.W., 1980. Applied Hydrogeology, pp 48 - 56 Bell and Howell Co., Ohio.

Fetter, C. W., 1980 Applied hydrogeology, pp 3 - 441, Prentice - Hall Inc, New York.

Freeze, R.A. and Cherry, J.A., 1979. Groundwater, pp 10 - 309, Prentice - Hall Inc. Englewood Cliffs, New Jersey.

Gibbs, R.J., 1967. The Geochemistry of Amazon River System part I. The factors that control the salinity and composition of suspended solids, Geol. Soc. Am. Bull, 78, pp 1203 - 1232, New York.

Gillman, C., 1933. Hydrology of Lake Tanganyika. Tanganyika Geological Survey Department. Bull. No. pp 1 - 22, Government Printer, Dar es Salaam.

Halligan, R., 1960. Quarter Degree Sheet No.92, Geological Survey of Tanganyika, Dodoma. Government Printer.

Hewlett, J.D. and J.C. Fortson., 1977. The Effect of Rainfall Intensity on Storm Flow and Peak Discharge from Forest land. Water Resources Res., 13, pp 259 - 266, American Geophysical Union.

Hewlett, J. D and J. D. Helvey., 1970. Effects of Forest Clear- Felling on the Storm Hydrograph. Water Resources Res., 6, pp 768 - 783, American Geophysical Union.

Iqbal, Z.M., 1998. Application of Environmental isotopes in Storm - Discharge Analysis of two contrasting stream channels in a water shed, Water Research, 32, pp 2959 - 2968, Pergamon - Elsevier.

Kunkle, G. R., 1962. The baseflow duration curve, a technique for the study of groundwater discharge from a drainage basin. J. Geophys. Res., 67, pp 1543 - 1553.

Meyboon, P., 1961. Estimating Groundwater Recharge from Stream Hydrographs, J. Geophs. Research, 66, pp 1203 - 1214.

Mosley, P. M., 1980. Mapping Sedimentation Sources in New Zealand Mountain Watershed, Environmental Geology, 3, pp 85 - 95., Springer - Verlag, New York.

Mwandosya, M. J., L. Luhanga, and E. K. Mugunisi., 1996 Environmental Protection and Sustainable Development. Pp 106 - 182. The Centre of Energy Environment, Science and Technology, Dar es Salaam.

Newbury, R.W, J. A. Cherry, and R. A. Cox., 1969. Groundwater - Streamflow systems in Wilson Creek Experimental Watershed, Manitoba. Canadian J. Earth Sciences, 6, pp 613 - 623.

Norconsult., 1982. Kigoma Water Master Plan, 7, Hydrology, pp 1 - 11, Oslo, Norway.

Norconsult., 1982, Kigoma Water Master Plan, 8, Hydrogeology, pp 17, Oslo, Norway.

Patterson, G., 1996 Baseline review. Sediment Discharge and Its consequences. RAF/92/G 32 Pollution Control and Other Measures to Protect Biodiversity in Lake Tanganyika, pp 1 - 82, Natural Resources Inst., UK.

Pilsnier, P.D., 1996. Limnological Sampling during second annual cycle (1994 - 1995) and Comparison with year one (1993 - 1994) on the Lake Tanganyika. GCP/RAF/27/FIN-TD/56 (En) 60. FAO/FINNIDA Research for the manage of lake Tanganyika, pp 1 -60.

Pinder, G.F and J.F. Jones., 1969. Determination of the Ground - Water Component of Peak Discharge from the Chemistry of Total Runoff. Water Resources, Res., 5, pp 438 - 445. American. Geophysical Union, Washington, DC.

Plummer, L.N., Eric C. Prestemon, and David L. Parkhurst 1994. NETPATH - Net Geochemical Reactions along a flow path - Version 2.0, US. Geological Survey Water - Resources Investigation Report 94 - 4169, pp. - 129; Reston, Virginia.

Reeder, S.W., B. Hitchon, and A.A. Levinson., 1972. Hydrogeochemistry of the surface Water of the Mackenzie River Drainage Basin, Canada. I, Factors controlling Inorganic Composition. Geochim. Cosmochim. Acta, 36, pp 825 - 865 Pergamon Press, Oxford.

Shahlaee, A.K., W.L. Nutter, E. R. Burroughts, Jr., and L.A. Morris 1991. Runoff and Sediment Production From burned Forest sites in the Georgia Piedmont. Water Res. Bull. 27, pp 485 - 493, AWRA. Cowell, Press, USA.

Tirlen, A (1979). Sediment Transport in Streams, Sampling and Analysis. Manual on Procedures in Operational Hydrology; 5, pp1- 50, Olso, Norway.

Walling, D. E., 1977. Assessing the Accuracy of Suspended Rating Curves for Small basin, Waer Resources Bull., 13, pp 531 - 538, AWARA, Cowell Press USA.

Walter, H. W. and Smith, D. D., 1958, Rainfall Energy and its relationship to soil loss. Trans. Am. Geophys. Union, 39, pp 285 - 291, AGU Pergamon Press. Washington, DC,

Watson, I. and Burnet D. A. (1995) Hydrology (An Environmental Approach): Lewis Publishers, Chelsea, MI. 702 pp.

White, W.R., 1982., Sedimentation Problems in River's basin. UNESCO studies and reports in Hydrology. 35, pp 13 - 133, Paris.

Zektser I.S., 1963. Role of Artesian Water in Feeding large Rivers as Exemplified by the Middle and lower reaches of the Neman River. Soviet Hydrology, 1, pp 94 - 98. USSR.

Appendix 1 Rainfall data

Appendix 1a RAINFALL OBSERVATIONS AT MWAMGONGO

<u>1997</u>

	r						r					
Date	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												39.1
18												0.3
19												20.6
20												5.0
21												NIL
22												0.4
23												NIL
24												22.9
25												1.1
26												6.3
27												NIL
28												16.9
29												2.4
30												NIL
31												4.5
Total												119.5
Total to			l		l			l				119.5
date												
No. of												11
days												10.0
average	1											10.9

<u>1998</u>

Date	J	F	М	А	М	J	J	Α	S	0	Ν	D
1	21.6	TR	24.6	6.0	1.0							
2	NIL	NIL	NIL	NIL	TR							
3	4.8	NIL	1.3	8.2	6.3							
4	3.7	NIL	13.2	4.1	1.3							
5	NIL	NIL	TR	1.9	3.5							
6	4.2	1.3	34.2	11.7	1.6							
7	NIL	16.8	NIL	NIL	21.6							
8	14.1	6.2	9.7	42.8	12.5							
9	1.8	19.4	5.8	NIL	37.7							
10	3.3	5.3	2.7	10.2	NIL							
11	9.9	1.2	1.4	54.3	NIL							
12	20.2	1.9	TR	2.8	NIL							
13	60.1	NIL	45.6	31.6	NIL							
14	NIL	10.2	NIL	4.4	4.4							
15	NIL	NIL	4.6	6.2	NIL							
16	27.2	NIL	7.4	11.7	NIL							
17	TR	NIL	5.0	18.0	NIL							
18	NIL	NIL	NIL	11.7	NIL							
19	64.9	1.8	NIL	NIL	NIL							
20	TR	NIL	TR	NIL	NIL							
21	NIL	51.0	22.3	NIL	NIL							
22	0.4	10.7	5.2	NIL								
23	3.4	NIL	NIL	NIL								
24	44.2	TR	NIL	NIL								
25	7.8	43.1	24.8	32.6								
26	TR	17.6	2.1	NIL								
27	23.7	5.8	13.7	NIL								
28	27.1	9.7	1.8	1.6								
29	35.2	-	17.1	2.3								
30	26.9	-	36.3	1.5								
31	33.8	-	14.4	-								
Total	438.3	202.0	293.2	263.6								
Total to	438.3	640.3	933.5	1197.1								
uate No of	21	15	21	19								$\left - \right $
days	<i>~</i> 1	10	~1	17								
average	20.9	13.5	14.0	13.9								

No rain gauge in October to December therefore no rainfall data

Appendix 1b RAINFALL OBSERVATIONS AT MITUMBA

Date	J	F	Μ	Α	М	J	J	А	S	0	Ν	D
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												16.0
17												26.4
18												0.2
19												28.7
20												14.3
21												1.1
22												0.2
23												0.2
24												38.1
25												2.2
26												5.2
27												TR
28												1.4
29												7.3
30												0.4
31												7.2
Total												148.9
Total to												148.9
No. of												15
days												
average												9.93

Collected immediately after rain gauge installation.

Date	J	F	М	А	М	J	J	Α	S	0	N	D
1	23.4	NIL	24.4	7.8	1.8							
2	NIL	TR	0.9	4.9	1.0							
3	3.6	NIL	NIL	NIL	12.8							
4	2.1	NIL	8.5	8.7	13.9							
5	NIL	NIL	1.3	3.7	32.5							
6	2.2	0.1	47.4	0.9	NIL							
7	2.0	20.3	NIL	6.9	33.9							
8	11.1	8.6	4.8	NIL	33.9							
9	4.1	12.5	NIL	33.9	51.9							
10	2.1	3.4	4.7	NIL	NIL							
11	10.3	1.1	0.9	76.4	NIL							
12	12.6	2.0	2.4	3.1	NIL							
13	48.3	NIL	63.0	13.1	NIL							
14	1.4	9.5	NIL	5.0	NIL							
15	NIL	0.5	NIL	6.7	NIL							
16	30.5	NIL	1.7	27.4	NIL							
17	0.6	NIL	1.9	8.4	NIL							
18	0.1	NIL	NIL	NIL	NIL							
19	52.6	24.4	NIL	NIL	NIL							
20	4.4	NIL	NIL	NIL	NIL							
21	1.9	33.3		NIL	NIL							
22	2.8	17.0		NIL	NIL							
23	6.8	NIL	33.7	NIL								
24	40.9	NIL	NIL	NIL								
25	NIL	38.6	NIL	43.3								
26	17.5	0.5	20.1	NIL								
27	25.6	NIL	2.4	1.5								
28	18.4	1.6	20.5	1.2								
29	24.8	-	4.4	8.3								
30	29.8	-	31.8	1.8								
31	NIL	-	26.7	-								
Total Monthly	386.2	173.4	301.5	263.0								
cum	380.2	559.0	001.1	1124.								
Totals												
No. of	26	15	21	19								
Mean	14.9	11.6	14.4	13.8								
monthly												
rainfall												

No rain gauge in October to December therefore no rainfall data

<u>1998</u>

<u>r ark riqs.</u>			
Serial No.	Date of	Gauge height [m]	Discharge [Q]
	Measurements		Measured in M ³ /sec
1.	31.10.97	0.10	0.043
2.	04.11.97	0.09	0.040
3.	09.11.97	0.08	0.041
4.	12.11.97	0.07	0.034
5.	13.11.97	0.06	0.031
6	13 12 97	0.09	0.073
7	21 12 97	0.03	0.124
<i>γ</i> . 8	22 12 97	0.10	0.112
0. 9	23 12 97	0.10	0.094
9	22.01.98	0.10	0.190
10	30.01.98	0.19	0.190
10.	31.01.08	0.15	0.450
11.	01.02.08	0.24	0.459
12.	01.02.98	0.22	0.341
13.	02.02.98	0.18	0.307
14.	04.02.08	0.18	0.271
13.	04.02.98	0.13	0.234
10.	05.02.98	0.14	0.201
17.	06.02.98	0.14	0.200
18.	07.02.98	0.14	0.196
19.	08.02.98	0.13	0.170
20.	12.02.98	0.11	0.18/
21.	13.02.98	0.11	0.154
22.	14.02.98	0.12	0.160
23.	20.03.98	0.13	0.200
24.	00.04.98	0.13	0.172
25.	14.04.08	0.20	0.405
20.	14.04.98	0.25	0.401
27.	17.04.98	0.21	0.300
20.	17.04.98	0.19	0.375
29. 30	21.04.08	0.21	0.375
31	23.04.98	0.17	0.228
31.	02.05.08	0.10	0.120
32.	02.05.98	0.14	0.180
34	04.05.08	0.14	0.185
35	05.05.08	0.13	0.185
36	06.05.08	0.14	0.107
30.	07.05.08	0.15	0.199
38	07.05.90	0.15	0.124
30.	00.05.08	0.13	0.250
<u> </u>	10.05.08	0.17	0.204
40.	11.05.08	0.20	0.305
41.	13 05 08	0.17	0.303
42.	11/05/08	0.17	0.233
43.	14.03.70	0.17	0.227
45	16.05.98	0.15	0.230
46	17 05 98	0.15	0.200
<u>47</u>	18 05 08	0.10	0.210
48	19 05 98	0.15	0.196
<u>40</u>	20.05.98	0.15	0.120
50	20.05.98	0.15	0.180
50.	07 06 98	0.13	0.167
52	08.06.98	0.11	0.133
52.	00.00.70	V.11	0.100

<u>APPENDIX 2a: Mitumba Stream Discharge Measurements at Gombe National</u> <u>Park Hqs.</u>

53.	09.06.98	0.12	0.138
54.	10.06.98	0.12	0.143
55.	11.06.98	0.11	0.133
56.	12.06.98	0.11	0.129
57.	13.06.98	0.12	0.131
58.	14.06.98	0.11	0.134
59.	15.06.98	0.10	0.117
60.	17.06.98	0.10	0.121
61.	18.06.98	0.12	0.107
62.	19.06.98	0.12	0.126
63.	20.06.98	0.12	0.126
64.	21.06.98	0.11	0.129
65.	22.06.98	0.10	0.134
66.	23.06.98	0.10	0.122
67.	24.06.98	0.10	0.124
68.	25.06.98	0.11	0.126
69.	26.06.98	0.10	0.113
70.	27.06.98	0.11	0.114
71.	28.06.98	0.11	0.124
72.	29.06.98	0.11	0.115
73.	30.06.98	0.11	0.108
74.	18.07.98	0.09	0.094
75.	19.07.98	0.09	0.086
76.	23.07.98	0.09	0.082
77.	24.07.98	0.09	0.080
78.	25.07.98	0.09	0.079
79.	26.07.98	0.09	0.070
80.	28.07.98	0.09	0.071
81.	29.07.98	0.09	0.079
82.	30.07.98	0.09	0.073
83.	31.07.98	0.09	0.066
84.	01.08.98	0.09	0.070
85.	02.08.98	0.09	0.069
86.	03.08.98	0.09	0.073
87.	04.08.98	0.09	0.068
88.	23.08.98	0.09	0.072
89.	24.08.98	0.09	0.069
90.	25.08.98	0.09	0.081
91.	26.08.98	0.09	0.085
<u>92.</u>	28.08.98	0.08	0.081
93.	29.08.98	0.08	0.084
94.	30.08.98	0.08	0.080
95.	<u>31.08.98</u>	0.08	0.071
96.	01.09.98	0.08	0.071
97.	02.09.98	0.08	0.063
98.	05.09.98	0.08	0.064
99. 100	07.00.08	0.08	0.003
100.	07.09.98	0.08	0.071
101.		0.08	0.003
102.	17.07.78	0.00	0.057
103.		0.00	0.004
104.	20.09.98	0.00	0.005
105.	21.09.98	0.08	0.073
100.	221.05.58	0.00	0.073
107.	22.09.98	0.00	0.061
100.	24 09 98	0.08	0.052
110	25.09.98	0.08	0.052
110.	20.07.70	0.00	0.001

111.	26.09.98	0.08	0.063
112.	27.09.98	0.08	0.058
113.	28.09.98	0.08	0.060
114.	29.09.98	0.08	0.054
115.	30.09.98	0.08	0.059
116.	01.10.98	0.08	0.061
117.	02.10.98	0.08	0.061
118.	03.10.98	0.08	0.060
119.	04.10.98	0.08	0.062
120.	08.10.98	0.08	0.059
121.	09.10.98	0.08	0.051
122.	10.10.98	0.08	0.055
123.	11.10.98	0.08	0.058
124.	12.10.98	0.08	0.051
125.	13.10.98	0.08	0.052
126.	14.10.98	0.08	0.066
127.	15.10.98	0.08	0.056
128.	22.10.98	0.08	0.049
129.	23.10.98	0.08	0.053
130.	24.10.98	0.08	0.064
131.	25.10.98	0.08	0.050
132.	26.10.98	0.08	0.056
133.	27.10.98	0.08	0.059
134.	28.10.98	0.08	0.059
135.	29.10.98	0.09	0.067

APPENDIX 2b : Ngonya Stream Discharge Measurements at Mwamugongo gauging station:

Serial No.	Date of Measurements	Gauge height [m]	Discharge [Q] Measured in
			m ³ /sec
1	03.11.97	0.14	0.093
2	09.11.97	0.15	0.096
3	13.11.97	0.13	0.091
4	14.12.97	0.17	0.260
5	16.12.97	0.15	0.174
6	17.12.97	0.15	0.255
7	18.12.97	0.15	0.175
8	19.12.97	0.15	0.213
9	20.12.97	0.17	0.234
10	21.12.97	0.16	0.188
11	22.12.97	0.14	0.194
12	23.12.97	0.14	0.194
13	27.12.97	0.17	0.234
14	28.12.97	0.17	0.222
15	29.12.97	0.16	0.266
16	30.12.97	0.17	0.259
17	31.12.97	0.15	0.215
18	01.01.98	0.15	0.228
19	02.01.98	0.20	0.362
20	03.01.98	0.20	0.320
21	04.01.98	0.22	0.364
22	22.01.98	0.24	0.506
23	23.01.98	0.35	0.509

24	23.01.98	0.39	0.733
25	29.01.98	0.30	1.024
26	30.01.98	0.38	0.892
27	31.01.98	0.46	1.076
28	01.02.98	0.32	0.958
29	02.02.98	0.32	0.915
30	03.02.98	0.28	0.940
31	04.02.98	0.27	0.652
32	05.02.98	0.23	0.641
33	06.02.98	0.23	0.589
34	07.02.98	0.25	0.660
35	08.02.98	0.22	0.536
36	12.02.98	0.21	0.461
37	13.02.98	0.20	0.490
38	14.02.98	0.20	0.465
39	15.02.98	0.18	0 393
40	20.03.98	0.18	0.282
41	07.04.98	0.22	0.414
42	08.04.98	0.22	0.361
43	09.04.98	0.26	1 417
43	15 04 98	0.20	0.901
45	16.04.98	0.30	0.760
46	16.04.98	0.28	0.889
40	17.04.98	0.26	0.885
47	17.04.98	0.20	0.845
40	22.04.08	0.36	0.607
49 50	22.04.98	0.20	0.032
51	02.05.08	0.27	0.705
52	02.05.98	0.26	0.490
53	04.05.08	0.20	0.414
54	05.05.08	0.28	0.440
55	05.05.98	0.27	0.420
55	07.05.08	0.28	0.405
57	07.05.98	0.27	0.570
59	07.03.98	0.29	0.393
50	08.05.98	0.27	0.470
59	00.05.98	0.28	0.550
61	10.05.08	0.23	0.507
62	11.05.08	0.27	0.004
62	12.05.08	0.26	0.455
64	13.03.98	0.23	0.399
65	14.03.98	0.27	0.382
66	16.05.09	0.27	0.379
67	17.05.09	0.27	0.403
<u> </u>	12.05.90	0.23	0.340
60	10.03.98	0.27	0.371
70	19.03.98	0.20	0.322
70	20.03.98	0.26	0.323
/1	21.03.98	0.20	0.317
12	02.06.02	0.25	0.243
/5		0.25	0.257
/4		0.25	0.243
/5	10.06.98	0.25	0.240
/6	11.06.98	0.25	0.259
77	12.06.98	0.25	0.248
78	13.06.98	0.24	0.200
79	14.06.98	0.23	0.194
80	15.06.98	0.24	0.205
81	17.06.98	0.24	0.204

82	18.06.98	0.25	0.193
83	19.06.98	0.24	0.216
84	20.06.98	0.24	0.213
85	21.06.98	0.24	0.226
86	22.06.98	0.24	0.208
87	23.06.98	0.24	0.201
88	24.06.98	0.24	0.229
89	25.06.98	0.23	0.211
90	26.06.98	0.24	0.220
91	27.06.98	0.24	0.187
92	28.06.98	0.22	0.206
93	29.06.98	0.23	0.173
94	30.06.98	0.23	0.187
95	17.07.98	0.25	0.165
96	18.07.98	0.25	0.175
97	19.07.98	0.25	0.162
98	23.07.98	0.24	0.133
99	24.07.98	0.24	0.158
100	25.07.98	0.20	0.158
101	26.07.98	0.22	0.168
102	27.07.98	0.22	0.165
103	28.07.98	0.21	0.165
104	29.07.98	0.20	0.142
105	31.07.98	0.19	0.163
106	01.08.98	0.19	0.141
107	02.08.98	0.18	0.145
108	03.08.98	0.19	0.145
109	04.08.98	0.20	0.151
110	23.08.98	0.20	0.152
111	24.08.98	0.21	0.143
112	25.08.98	0.20	0.109
113	26.08.98	0.20	0.131
114	28.08.98	0.20	0.109
115	29.08.98	0.20	0.105
116	30.08.98	0.20	0.116
117	31.08.98	019	0.118
118	01.09.98	0.19	0.115
119	02.09.98	0.18	0.108
120	05.09.98	0.17	0.135
121	06.09.98	0.17	0.116
122	07.09.98	0.17	0.115
123	08.09.98	0.15	0.106
124	17.09.98	0.15	0.113
125	18.09.98	0.15	0.091
126	19.09.98	0.14	0.110
127	20.09.98	0.14	0.129
128	21.09.98	0.14	0.131
129	22.09.98	0.14	0.139
130	23.09.98	0.14	0.103
131	24.09.98	0.14	0.101
132	25.09.98	0.14	0.112
133	26.09.98	0.14	0.104
134	27.09.98	0.14	0.141
135	28.09.98	0.14	0.107
136	29.09.98	0.14	0.095
137	30.09.98	0.14	0.107
138	01.10.98	0.14	0.100
139	02.10.98	0.14	0.090
1			•

140	03.10.98	0.14	0.098
141	04.10.98	0.14	0.088
142	08.10.98	0.13	0.091
143	09.10.98	0.13	0.103
144	10.10.98	0.13	0.090
145	11.10.98	0.12	0.087
146	12.10.98	0.12	0.087
147	13.10.98	0.12	0.090
148	14.10.98	0.12	0.101
149	15.10.98	0.13	0.109
150	22.10.98	0.12	0.086
151	23.10.98	0.12	0.102
152	24.10.98	0.12	0.107
153	25.10.98	0.12	0.089
154	26.10.98	0.12	0.086
155	27.10.98	0.12	0.096
156	28.10.98	0.17	0.192
157	29.10.98	0.14	0.105

Appendix 3 SAMPLE FIELD NOTES

Sample No.07/10/1997 GOTZ Date: 29/10/97 Location: Mitumba stream bridge Time: 1345hrs, During the rain season S: 04º38.401 E: 29º37.851 Altitude: 600m above sea level Chemical data: $[CL^{-1}], mg/l = 8.0$ pH: Temp. ${}^{0}C = 24.0$ Remarks: ***** Sample No.08/10/1997 MWTZ Date: 29/10/97 Time: Mwamgongo - Ngonya stream S: 04⁰37.392 E: 029°38.317 Altitude: 670m above sea level Chemical data: $[CL^{-1}], mg/l = 6.0$ pH: Temp. ${}^{0}C = 24.2$ Remarks: Quite disturbed area; villagers washing, bathing, agricultural activities. The stream has shifting behaviour ***** Sample No.09/10/1997 GOTZ Date: 30/10/97 Location: Kakombe stream at the bridge N.B. Received pH, DO, EC probes from pollution group. Received from RV Echo Captain Mr. Chata pH standardisation done according to the standard manual Time: 0900hrs, During the rain season S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 8.0$ EC at 25 0 C, μ scm⁻¹ = 191.0 pH: 7.61

Temp. ${}^{0}C = 22.3$ $DO(O_2)$ probe not working properly Remarks: ***** Sample No.10/10/1997 GOTZ Date: 30/10/97 Location: Mitumba stream at the bridge Time: 1135hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 6.0$ EC at 25°C, µscm⁻¹ pH: 7.33 Temp. ${}^{0}C = 24.2$ Remarks: ***** Sample No.11/10/1997 MWTZ Date: 30/10/97 Location: Nyamnini tributary of Ngonya stream Time: 1420hrs, during the rain season S: E: Altitude: 780m above sea level Chemical data: $[CL^{-1}]$, mg/l = 6.0 EC at 25° C, μ scm⁻¹ = 16.1 pH: 5.62 Temp. ${}^{0}C = 24.3$ Remarks: pH reduced may be because of humus litter around reducing environment ********* Sample No.12/10/1997 MWTZ Date:30/10/97 Location: Mbale spring, tributary of Ngonya Time: 1540hrs, rain season S: E: Altitude: 720m Chemical data:

 $[CL^{-1}], mg/l = 8.0$

EC at 25°C, uscm⁻¹ 29.2 pH: 5.88 Temp. ${}^{0}C = 24.8$ Remarks: Reducing environment ***** Sample No.13/10/1997 MWTZ Date:30/10/97 Location: Ngonva stream Time: 1605hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 10.0$ EC at 25° C. uscm⁻¹ = 43.6 pH: 7.50 temp. ${}^{0}C = 26.7$ Remarks: Variation of EC and pH at this point compared to previous day may be due to dilution factor - rainfall and water seepage/washing from soils/mountains ********* Sample No.1/10/1997 GOTZ Date:3/10/97 Location: Mitumba western tributary Time: 1215hrs, rain season S: E: Altitude: 880m above sea level Chemical data: $[CL^{-1}], mg/l = 2.0$ EC at 25° C, μ scm⁻¹ = 9.5 pH: 5.16 temp. ${}^{0}C = 22.7$ O_2 , % = 62.5Remarks: The tributary is full of stones, logs -Reducing environment a lot of litters

***** Sample No.15/10/1997 GOTZ Date: 31/10/97 Location: Mitumba spring Time: 1350hrs S: E: Altitude: at 790m above sea level Chemical data: $[CL^{-1}], mg/l = 2.0$ EC at 25° C, μ scm⁻¹ = 12.5 pH: 5.50 Temp. ${}^{0}C = 22.8$ $O_2, \% = 35.5$ Remarks: The spring is about 30m from the main stream. Variations of pH may be due to CO₂ by organisms (bacterial activities) ***** Sample No.16/10/1997 GOTZ Date: 31/10/97 Location: Mitumba confluence Time: 1440hrs, during the rain season S: E: Altitude: 670m above sea level Chemical data: $[CL^{-1}], mg/l = 6.0$ EC at 25° C, μ scm⁻¹ = 23.7 pH: 7.08 Temp. ${}^{0}C = 23.7$ $O_2 \% = 45.1$ Remarks: ****** Sample No.17/10/1997 GOTZ Date: 31/10/97 Location: Mitumba stream at the bridge Time: 1600hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 6.0$ EC at $25^{\circ}C$, $\mu scm^{-1} = 24.3$ pH: 7.33 Temp. ${}^{0}C = 25.0$ $O_2 = \% = 38.2$ Remarks:

***** Sample No.18/11/1997 MWTZ Date: 1/11/97 Location: Nyaruhunga Time: 1200hrs S: E: Altitude: 860 above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 17.0 pH: 6.94 temp. ${}^{0}C = 26.9$ $O_2 \% = 32.6$ Remarks: unstable and land slide ***** Sample No.19/11/1997 MWTZ Date: 1/11/97 Location: Nyaruhunga spring(b) Time: 1230hrs S: E: Altitude: 880m above sea level Chemical data: $[CL^{-1}]$, mg/l = 4.0 EC at 25° C, μ scm⁻¹ = 31.0 pH: 7.40 Temp. ${}^{0}C = 28.0$ $O_2, \% = 40.3$ Remarks: 1.very clear water 2. A lot of weeds, rocks, logs mushrooms ***** Sample No.20/11/1997 MWTZ Date: 1/11/97 Location: Nyaruhunga (main) Time: 1330hrs. rain season S: E: Altitude: 940m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 33.3 pH: 7.44 Temp. ${}^{0}C = 29.3$ $O_2 \% = 28.3$ Remarks: -Milky colour -A lot of stones, rocks, land slide.

***** Sample No.21/11/1997 MWTZ Date: 1/11/97 Location: Mgunga tributary Time: 1400hrs S: E: Altitude: 915m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 20.3 pH: 4.77 Temp. ${}^{0}C = 24.0$ $O_2 = 36.9$ Remarks: Stones reducing environment Banana plants around ********* Sample No.22/11/1997 MWTZ Date: 1/11/97 Location: Kivumba tributary Time: 1600hrs, rain season S: E: Altitude: 1045m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C. uscm⁻¹ = 22.2 pH: 7.29 Temp. ${}^{0}C = 23.1$ $O_2 = 26.2$ Remarks: A lot of stones rocks, weeds water Not very clear, yellowish A lot of suspended matter

64

***** Sample No.23/11/1997 MWTZ Date: 1/11/97 Location: Nyandinga confluence Time: 1700hrs S: E: Altitude: 780m above sea level Chemical data: $[CL^{-1}], mg/l = 8.0$ EC at 25° C, μ scm⁻¹ = 35.9 pH: 7.19 Temp. ${}^{0}C = 24.6$ $O_2 = 21.5$ Remarks: A lot of weeds water, pebbles, gravestones Reducing environment Colour of water-slightly milky ***** Sample No.24/11/1997 GOTZ Date: 02/11/97 Location: Kakombe tributary Time: 1025hrs S: E: Altitude: 825m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 24.2 pH: 5.43 $Temp. {}^{0}C = 23.3$ $O_2 \ \% = 28.3$ Remarks: A lot of humus Stone Bushy environment Clear water ****** Sample No.25/11/1997 GOTZ Date: 2/11/97 Location: Kakombe (c) -Main tributary Time: 1210hrs S: E: Altitude: 950m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$

EC at 25° C, μ scm⁻¹ = 4.3

pH: 6.18

Temp. ${}^{0}C = 20.8$ $O_2 = 26.4$ Remarks: There is waterfall about 40m high A lot of stones, logs Bushy environment The river is rocky and very rough Clear water ***** Sample No.26/11/1997 GOTZ Date: 2/11/97 Location: Kakombe spring (d) Time: 1345hrs S: E: Altitude: 880m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 8.2 pH: 5.95 Temp. ${}^{0}C = 22.8$ $O_2 \% = 13.0$ Remarks: Rocky, bushy environment A lot of humus Clear water ***** Sample No.54/12/1997 MWTZ Date: 13/12/97 Location: Ngonva stream Time: 1635hrs, during the rain season S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 10.0$ EC at 25° C, μ scm⁻¹ = 51.5 pH: 7.48 Temp. ${}^{0}C = 25.5$ DO, $O_2 \% = 98.6$ Remarks: Two samples were collected for isotopes and chemical data ***** Sample No. 55/12/1997 GOTZ Date: 13/12/97 Location: Mitumba bridge Time: 1720hrs S: E:

Altitude: Chemical data: $[CL^{-1}], mg/l = 6.0$ EC at 25° C, μ scm⁻¹ = 24.5 pH: 7.44 Temp. ${}^{0}C = 23.8$ DO. $O_2 \% = 95.4$ Remarks: Two samples were collected for isotopes and chemical data ***** Sample No.56/12/1997 GOTZ Date: 14/12/97 Location: Mitumba stream Time: 0900hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 9.9 pH: 5.81 Temp. ${}^{0}C = 21.7$ $DO, O_2 \% = 84.3$ Remarks: 1) Two samples were collected for isotopes and chemical data 2) Water quantity has increased, raining

***** Sample No.57/12/1997 GOTZ Date: 14/12/97 Location: Mitumba tributary Time: 1235hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 9.3 pH: 5.41 Temp. ${}^{0}C = 22.2$ DO. $O_2 \% = 82.7$ Remarks: 1). The tributary was usually dry during the dry season 2). Two samples were collected for isotopes and chemical data 3). Raining 4). A lot of reducing environment rocky ****** Sample No.58/12/1997 GOTZ Date: 14/12/97 Location: Mitumba spring(790) Time: 1300hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 14.6 pH: 5.47 $Temp. {}^{0}C = 22.4$ DO. $O_2 \% = 96.0$ Remarks: 1) Two samples were collected for isotopes and chemical data 2) Very clear water, stones, bushy ***** Sample No.59/12/1997 MWTZ Date: 14/12/97 Location: Mitumba tributary(after 670m.a.s.l) Time: 1345hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 13.1

pH: 5.85

Temp. ${}^{0}C = 22.5$ DO: $O_2 \% = 92.9$ Remarks: 1) Two samples were collected for isotopes and chemical data 2) Rocky, litters ***** Sample No.60/12/1997 GOTZ Date: 14/12/97 Location: Mitumba western spring Time: 1430hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 2.0$ EC at $25^{\circ}C$, $\mu scm^{-1} = 17.6$ pH: 5.66 Temp. ${}^{0}C = 23.0$ DO. $O_2 \% = 97.9$ Remarks: 1) Two samples were collected for isotopes and chemical data 2) Rocky and bushy ***** Sample No.61/12/1997 GOTZ Date: 14/12/97 Location: Mitumba confluence Time: 1520hrs S: E: Altitude: 670m above sea level Chemical data: $[CL^{-1}]$, mg/l = 6.0 EC at 25° C, μ scm⁻¹ = 21.6 pH: 7.04 Temp. ${}^{0}C = 23.0$ $DO. O_2 \% = 97.7$ Remarks: 1) Two samples were collected for isotopes and chemical data 2) Rocky and bushy ***** Sample No.62/12/1997 MWTZ (01) Date: 14/12/97 Location: Ngonya gauging station, sample 01- During peak flash flood Relative height 0.2m(Gauge height) Time: S:

E:

Altitude: Chemical data: $[CL^{-1}]$, mg/l = 16.0 EC at 25° C, μ scm⁻¹ = 38.7 pH: 6.7 Temp. ${}^{0}C = 24.5$ $DO. O_2 \% = 36.9$ Remarks: 1) Analysed after 19hrs of collection divided into two samples (isotopes + chemical) ********** Sample No. 63/12/1997 MWTZ (02) Date: 14/12/97 Location: Ngonya gauging station, sample 02- Two hrs after the peak flash flood (Gauge height 0.18m) Time: S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 6.0$ EC at 25° C, μ scm⁻¹ = 45.5 pH: 7.43 Temp. ${}^{0}C = 24.3$ DO. $O_2 \% = 92.8$ Remarks: 1) Analysed after 17hrs of collection 2) Divided into two samples (isotopes +chemical) ***** Sample No.64/12/1997 MWTZ (03) Date: 14/12/97 Location: Ngonya gauging station, sample 03- Four hrs after the peak flash flood (Gauge height 0.16m) Time: S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 45.6 pH: 7.33 Temp. ${}^{0}C = 24.1$ DO, $O_2 \% = 93.9$ Remarks: 1) Analysed after 15hrs of collection Measurement probes were with Mrs Mbwambo at the hills during the time of these three sample's collection 2) Divided into two samples(isotopes + chemical)

Sample No.65/12/1997 GOTZ Date: 15/12/97 Location: Kakombe bridge during rain season Time: 1130hrs S: E: Altitude: Chemical data: $[CL^{-1}], mg/l = 6.0$ EC at 25° C, μ scm⁻¹ = 63.7 pH: 7.71 Temp. ${}^{0}C = 22.3$ $DO. O_2 \% = 94.8$ Remarks: 1) One sample taken for chemical analysis, NO sample taken for isotope 2) Ouantity of water has increased 3) Clear water

NOTE:

***** Sample No.66/12/1997 GOTZ Date: 15/12/97 Location: Mitumba rain gauge Time: S: E: Altitude: Chemical data: $[CL^{-1}], mg/l =$ EC at 25° C, μ scm⁻¹ = pH: Temp. $^{0}C =$ $DO, O_2 \% =$ Remarks: ***** Sample No.67/12/1997 MWTZ Date: 15/12/97 Location: Nyamnini spring Time: 0410hrs S: E: Altitude: 780m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25°C, µscm⁻¹ =19.2 pH: 5.63

Temp. ${}^{0}C = 23.7$ $DO. O_2 \% = 92.3$ Remarks: 1) Two samples collected (isotopes + chemical) 2) Banana plantation, litters ********* Sample No.68/12/1997 MWTZ Date: 15/12/97 Location: Nyandinga confluence Time: 1700hrs S: E: Altitude: 780m above sea level Chemical data: $[CL^{-1}]$, mg/l = 6.0 EC at 25° C, μ scm⁻¹ = 30.8 pH: 6.95 Temp. ${}^{0}C = 23.1$ DO. $O_2 \% = 99.2$ Remarks: 1) Two samples collected (isotope + chemical) 2) Stones, reducing environment ***** Sample No.69/12/1997 MWTZ Date: 16/12/97 Location: Kivumba tributary Time: 1330hrs S: E: Altitude: 950m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C, μ scm⁻¹ = 13.5 pH: 7.30 Temp. ${}^{0}C = 21.2$ $DO, O_2 \% = 97.9$ Remarks: 1) Falls quantity of water has increased 2) Rocky water not clear 3) Two samples collected (isotopes + chemical) ******* Sample No.70/12/1997 MWTZ Date: 6/12/97 Location: Mgunga tributary Time: 1525hrs S: E: Altitude: 915m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$

EC at 25° C, μ scm⁻¹ = 20.1 pH: 4.91 Temp. ${}^{0}C = 23.2$ $DO, O_2 \% = 97.2$ Remarks: 1) Two samples collected (isotopes + chemical) 2) Verv clear water 3) Banana plantation around, a lot of stones ******** Sample No.71/12/1997 MWTZ Date: 16/12/97 Location: Nyaruhunga main Time: 0415hrs S: E: Altitude: 940m above sea level Chemical data: $[CL^{-1}]$, mg/l = 4.0 EC at 25° C, μ scm⁻¹ = 42.8 pH: 7.40 Temp. ${}^{0}C = 24.2$ DO: $O_2 \% = 98.1$ Remarks: 1) Water not clear 2) A lot of stones 3) Two samples collected (isotopes + chemical) ********** Sample No.72/12/1997 MWTZ Date: 16/12/97 Location: Nvaruhunga spring(b) Time: 0440hrs S: E: Altitude: 880m above sea level Chemical data: $[CL^{-1}], mg/l = 4.0$ EC at 25° C. uscm⁻¹ = 71.3 pH: 7.72 Temp. ${}^{0}C = 22.9$ DO, O_2 % = 95.2 Remarks: 1) Very clear water Grassy, stones 2) Two samples collected (isotopes + chemical)

Sample No.73/12/1997 MWTZ Date: 16/12/97 Location: Nyaruhunga spring(a) Time: 0510hrs S: E: Altitude: 860m above sea level Chemical data: $[CL^{-1}], mg/l = 2.0$ EC at 25° C, μ scm⁻¹ = 21.8 pH: 7.54 Temp. ${}^{0}C = 23.1$ DO. $O_2 \% = 97.1$ Remarks: 1) Two samples collected (isotopes + chemical) 2) Grassv

NOTE: -

Sample No.43-53/12/1997 GOTZ 66/12/97 GOTZ Location: Rain water from Kakombe

NOTE: -

Rain water sample for chemical analysis 31/11/1997 GOTZ 37/11/1997 GOTZ 43/11/1997 GOTZ 47/11/1997 GOTZ ***** Sample No.74/12/1997 MWTZ Date: 16/12/97 Location: Ngonya Gauging station Time: S: E: Altitude: Chemical data: NOT MEASURED $[CL^{-1}], mg/l =$ EC at 25° C, μ scm⁻¹ = pH: Temp. $^{0}C =$ $O_2 \% =$ Remarks: ***** Sample No.75/12/1997 MWTZ

Date: 17/12/97 Source: Ngonya stream (WL 0.15m) Remarks: Collected at 4.30 after shower ***** Sample No.77/12/1997 MWTZ Date: 18/12/97 Source: Ngonya stream (WL 0.15m) Remarks: Rainless day ***** Sample No.78/12/1997 MWTZ Date: 19/12/97 Source: Ngonya stream(WL 0.15) Remarks: Collected at 12.35 after shower ***** Sample No.80/12/1997 MWTZ Date: 20/12/97 Source: Ngonva stream Remarks: Collected at 10.50 after shower ***** Sample No.83/12/1997 GOTZ Date: 21/12/97 Source: Mitumba stream (WL 0.11) Remarks: ***** Sample No.82/12/1997 GOTZ Date: 21/12/97 Source: Mwamgongo (Ngonya stream) (WL 0.16) Remarks: ***** Sample No.84/12/1997 MWTZ Date: 22/12/97 Source: Ngonya stream (WL 0.14) Remarks: ***** Sample No.85/12/1997 GOTZ Date: 22/12/97 Source: Mitumba stream (WL 0.10) Remarks: ***** Sample No.86/12/1997 MWTZ Date: 23/12/97 Source: Ngonya stream (WL 0.14) Remarks: ***** Sample No.87/12/1997 GOTZ Date: 23/12/97 Source: Mitumba stream (WL 0.10)

Remarks: ***** Sample No.88/12/1997 MWTZ Date: 27/12/97 Source: Ngonva stream (WL 0.17) Remarks: ***** Sample No.89/12/1997 MWTZ Date: 28/12/97 Source: Ngonya stream (WL 0.17) Remarks: ***** Sample No.91/12/1997 MWTZ Date: 29/12/97 Source: Ngonya stream (WL 0.14) Remarks: ***** Sample No.93/12/1997 MWTZ Date: 30/12/97 Source: Ngonya stream (WL 0.17) Remarks: ***** Sample No.94/12/1997 MWTZ Date: 31/12/97 Source: Ngonva stream (WL 0.15) Remarks: ***** Sample No.96/1/1998 MWTZ Date: 1/1/98 Source: Ngonya stream (WL 0.15) Remarks: ***** Sample No.98/1/1998 MWTZ Date: 2/1/98 Source: Ngonya stream (WL 0.20m) Remarks: ***** Sample No.99/1/1998 MWTZ Date: 3/1/98 Source: Ngonya stream Remarks: ***** Sample No.101/1/1998 MWTZ Date: 4/1/97 Source: Ngonva stream (WL 0.19m) Remarks:

***** Sample No.102/1/199 GOTZ Date: 22/1/98 Source: Mitumba stream Remarks: ***** Sample No.103/1/1998 GOTZ Date: 22/1/98 Source: Mitumba confluence Remarks: ***** Sample No.104/1/1998 GOTZ Date: 22/1/98 Source: At the lake - zero Revs (mixing point about 15m in lake) Remarks: **** Sample No.105/1/1998 MWTZ Date: 22/1/98 Source: At Ganging station - Ngonya stream Remarks: ***** Sample No.106/1/1998 MWTZ Date: 22/1/98 Source: At the main confluence - Ngonya stream Remarks: ***** Sample No.107/1/1998 MWTZ Date: 22/1/98 Source: At zero Revs (8.30m in the lake mixing point) Remarks: ***** Sample No.108/1/1998 GOTZ Date: 23/1/98 Source: Water lake near Mitumba Remarks: ***** Sample No.109/1/1998 MWTZ Date: 23/1/98 Source: Kivumba 1st waterfalls 950m.a.s.1 Remarks: ***** Sample No.110/1/1998 MWTZ Date: 23/1/98 Source: Ngonya stream Altitude: 910m.a.s.1 Remarks:

Sample No.111/1/1998 MWTZ Date: 23/1/98 Source: Nyamhunga main stream Altitude 940m.a.s.1 Remarks: ***** Sample No.112/1/1998 MWTZ Date: 23/1/98 Source: Nyamhunga (b) spring Altitude 880m.a.s.l Remarks: ***** Sample No.113/1/1998 MWTZ Date: 23/1/98 Source: Nyamhunga (a) spring Altitude 860m.a.s.1 Remarks: ***** Sample No.114/1/1998 MWTZ Date: 23/1/98 Source: Main confluence-Ngonya-Nyandiga Altitude 780m.a.s.1 Remarks: ***** Sample No.115/1/1998 MWTZ Date: 23/1/98 Source: Mbale spring Altitude 730 Remarks: ***** Sample No.116/1/1998 MWTZ Date: 23/1/98 Source: Ngonya stream Altitude Remarks: ***** Sample No.117/1/1998 MWTZ Date: 23/1/98 Source: At gauging station, Ngonya stream Altitude Remarks: ****** Sample No.118/1/1998 MWTZ Date: 23/1/98 Source: Lake water in lake Mwamgongo Altitude 150m.a.s.l

Remarks:

***** Sample No.120/1/1998 MWTZ Date: 24/1/98 Source: Ngonya stream Altitude Remarks: Peak floods at gauging station ***** Sample No.121/1/1998 MWTZ Date: 24/1/98 Source: Ngonya stream Remarks: Peak floods ***** Sample No.123/1/1998 MWTZ Date: 29/1/98 Source: Remarks: ***** Sample No.124/1/1998 GOTZ Date: 30/1/98 Source: Mitumba stream Remarks: ***** Sample No.125/1/1998 MWTZ Date: 30/1/98 Source: Ngonya stream Remarks: ***** Sample No.127/1/1998 MWTZ Date: 31/1/98 Source: Ngonya stream Remarks: ***** Sample No.128/1/1998 GOTZ Date: 31/1/98 Source: Mitumba stream Remarks: ***** Sample No.129/2/1998 GOTZ Date: 1/2/98 Source: Mitumba stream Remarks: ***** Sample No.136/2/1998 MWTZ Date: 5/2/98 Source: Ngonya stream Remarks:

69

Sample No.137/2/1998 Date: 6/2/98 Source: Ngonya stream Remarks: ***** Sample No.138/2/1998 Date: 7/2/98 Source: Ngonva stream Remarks: ***** Sample No.139/2/1998 Date: 8/2/98 Source: Ngonya stream Remarks: **** Sample No.140/2/1998 Date: 12/2/98 Source: Ngonya stream Remarks: ***** Sample No.141/2/1998 MWTZ Date: 13/2/98 Source: Ngonya stream Remarks: ***** Sample No.142/2/1998 MWTZ Date: 14/2/98 Source: Ngonya stream Remarks: ***** Sample No.144/2/1998 MWTZ Date: 15/2/98 Source: Ngonya stream Remarks: ****** Sample No.153/3/1998 GOTZ Date: 20/3/98 Source: Mitumba stream at Gauging station Altitude: 630m.a.s.1 Remarks: ****** Sample No.154/3/1998 GOTZ Date: 20/3/98 Source: Mitumba stream/ L. Tanganyika mixing point Altitude: Remarks:

***** Sample No.155/3/1998 GOTZ Date: 20/3/98 Source: L. water at Mitumba Altitude: Remarks: ***** Sample No.156/3/1998 MWTZ Date: 20/3/98 Source: Ngonya stream at Gauging station Altitude: 640m.a.s.1 Remarks: ***** Sample No.157/3/1998 MWTZ Date: 20/3/98 Source: Nyamunini spring Altitude: 800m.a.s.1 Remarks: ***** Sample No.158/3/1998 KGM-TZ Date: 21/3/98 Source: Nyakageni spring (Kigoma town) Altitude: 640m.a.s.1 Remarks: ***** Sample No.1/3/1998 Date: 20/3/98 Source: Kavusindi stream Altitude: Remarks: ***** Sample No.151/3/1998 MWTZ Date: 13/3/98 Source: Ngonya stream Altitude: Remarks: ***** Sample No.145/2/1998 MWTZ Date: 21/2/98 Source: Ngonya stream Altitude: Remarks: ***** Sample No.163/3/1998 MWTZ Date: 25/3/98 Source: Ngonya stream Altitude:

Remarks: Sampling time 07hr00 *********** Sample No.167/3/1998 MWTZ Date: 29/3/98 Source: Ngonya stream Altitude: Remarks: Sampling time 16hr15 ********** Sample No.185/4/1998 GOTZ Date: 9/4/98 Location: Mitumba stream Altitude: Remarks: Peak floods, sampling time 14hr30 ***** Sample No.189/4/1998 GOTZ Date: 12/4/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.192/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: Taken at the right bank 0.10m from right bank. velocity 0.442m/s ***** Sample No.193/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: at 0.9m max flow, velocity 1.253m/s ***** Sample No.194/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: (the left bank) at 6.30m from right bank velocity 0.285m/s ***** Sample No.195/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks:

Sample No.196/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: at 4.50mb 2nd high flow point, velocity 1.091m/s ***** Sample No.197/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: A composite sample, taken at every 40cm from left edge to right edge after rainfall ******** Sample No.198/4/1998 MWTZ Date: 16/4/98 Location: Ngonva stream Altitude: Remarks: velocity = 0.351 m/s(after rains) at 0.10 from right edge ********* Sample No.199/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: At 0.90 from right edge, velocity 1.377m/s **** Sample No.200/4/1998 MWTZ Date: 16/4/98 Location: Ngonya stream Altitude: Remarks: At 4.50 from right bank/edge velocity 0.976m/s ***** Sample No.201/4/1998 MWTZ Date: 16/4/98 Location: Ngonva stream Altitude: Remarks: At 40cm from left edge, velocity 0.0m/s ***** Sample No.203/4/1998 MWTZ Date: 16/4/98 Location: Water lake mixed with Ngonya Altitude: Remarks: *****

Sample No.204/4/1998 MWTZ Date: 16/4/98

Location: Fresh water lake Altitude: Remarks: ***** Sample No.205/4/1998 GOTZ Date: 17/4/98 Location: Mitumba stream Altitude: Remarks: A composite sample, taken at every 40cm with 3.10m span of stream ********* Sample No.206/4/1998 GOTZ Date: 17/4/98 Location: Mitumba stream Altitude: Remarks: Taken at 25cm from left edge, velocity = 0.153 m/s ***** Sample No.207/4/1998 GOTZ Date: 17/4/98 Location: Mitumba stream Altitude: Remarks: Taken at 10cm from right edge, velocity = 0.0m/s ***** Sample No.208/4/1998 GOTZ Date: 17/4/98 Location: Mitumba stream Altitude: Remarks: Taken at 2.60m of max. Revolutions, velocity = 0.903 m/s***** Sample No.209/4/1998 GOTZ Date: 17/4/98 Location: Mitumba stream Altitude: Remarks: Taken at 1.20m from left bank edge, velocity = 0.803m/s ***** Sample No.210/4/1998 GOTZ Date: 17/4/98 Location: Mixing point of Mitumba and the Lake Altitude: Remarks: ***** Sample No.212/4/1998 MWTZ Date: 17/4/98 Location: Ngonya stream

Altitude:

Remarks: Taken at 20cm from left edge after rainfall, velocity = 0.634m/s ***** Sample No.213/4/1998 MWTZ Date: 17/4/98 Location: Ngonva stream Altitude: Remarks: Taken at a point of max. Revolutions 80cm right edge, Velocity = 1.875 m/s****** Sample No.214/4/1998 Date: 17/4/98 Location: Ngonva stream Altitude: Remarks: Taken at 40cm from left edge, after rainfall. Velocity = 0.799 m/s***** Sample No.215/4/1998 MWTZ Date: 17/4/98 Location: Ngonya stream Altitude: Remarks: A composite sample taken after rainfall at 50cm intervals ***** Sample No.216/4/1998 MWTZ Date: 17/4/98 at GH station Location: Ngonya stream Altitude: Remarks: Taken at a point of min revolutions 660cm from right edge, velocity = 0.097 m/s ***** Sample No.217/4/1998 MWTZ Date: 18/4/98 Location: Rubona tributary (Ngonya) Altitude: at 1245m.a.s.l Remarks: ***** Sample No.218/4/1998 MWTZ Date: 18/4/98 Location: Kivumba (Ngonya) main spring Altitude: at 1340m.a.s.l Remarks:

Sample No.219/4/1998 MWTZ Date: 18/4/98 Location: Nyaruhunga stream Altitude: 980m.a.s.1 Remarks: ***** Sample No.220/4/1998 MWTZ Date: 18/4/98 Location: Nyamunini spring at the intake Altitude: 780m.a.s.1 Remarks: ***** Sample No.221/4/1998 GOTZ Date: 18/4/98 Location: Mitumba stream at G.H gauge Altitude: Remarks: ****** Sample No.222/4/1998 GOTZ Date: 19/4/98 Location: Mitumba spring source Altitude: 960m.a.s.1 Remarks: It is where Mitumba stream starts ***** Sample No.223/4/1998 GOTZ Date: 19/4/98 Location: Spring North of Mitumba (flowing into Mitumba) Altitude: 670m.a.s.l confluence with Mitumba is at 950m.a.s.l Remarks: ***** Sample No.224/4/1998 GOTZ Date: 19/4/98 Location: A spring (3m south) Altitude: 850m.a.s.1 Remarks: Meets MitumbaTaken at an Alt 850m.a.s.1 ***** Sample No.225/4/1998 GOTZ Date: 19/4/98 Location: A spring North of Mitumba about 20m Altitude: 780m.a.s.1 Remarks: Meets MitumbaTaken at an Alt 775m.a.s.l ***** Sample No.226/4/1998 GOTZ Date: 19/4/98 Location: A spring North of Mitumba about 15m from Mitumba Altitude: 765m.a.s.l (sampling)

Remarks: Meets MitumbaTaken at an Alt 770m.a.s.l ***** Sample No.227/4/1998 GOTZ Date: 19/4/98 Location: A spring North of Mitumba Altitude: 770m.a.s.1 Remarks: Meets MitumbaTaken at an Alt 765m.a.s.l ***** Sample No.228/4/1998 GOTZ Date: 21/4/98 Location: Kakombe spring 1 (source) Altitude: 1190m.a.s.l Remarks: ***** Sample No.229/4/1998 GOTZ Date: 21/4/98 Location: Kakombe source spring 2 (on 2nd ridge) Altitude: 1170m.a.s.1 Remarks: ***** Sample No.230/4/1998 GOTZ Date: 21/4/98 Location: Kakombe source spring 3 Altitude: 1130m.a.s.l Remarks: ***** Sample No.231/4/1998 Date: 21/4/98 Location: Mitumba gauge station Altitude: Remarks: Position min right bank 5+3.1m, velocity = 0.00m/s***** Sample No.232/4/1998 GOTZ Date: 21/4/98 Location: Mitumba stream Altitude: Remarks: Composite sample 10cm interval *********** Sample No.233/4/1998 GOTZ Date: 21/4/98 Location: Mitumba gauging station Altitude: Remarks: At 1.2m from left bank, velocity = 0.128 m/s ***** Sample No.235/4/1998 GOTZ Date: 21/4/98

Location: Mitumba gauge station

Altitude: Remarks: Position at 2.60m from left edge bank, max. velocity = 0.803 m/s***** Sample No.236/4/1998 GOTZ Date: 22/4/98 Location: Kakombe stream (near waterfall No. 1) spring 4 Altitude: 750m.a.s.l Remarks: ***** Sample No.237/4/1998 GOTZ Date: 22/4/98 Location: Kakombe stream, spring 5 Altitude: 815m.a.s.l Remarks: ***** Sample No.238/4/1998 GOTZ Date: 22/4/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.239/4/1998 GOTZ Date: 22/4/98 Location: Ngonva stream composite Altitude: Remarks: ***** Sample No.240/4/1998 KGM Date: 25/4/98 Location: Mwamgongo intake w/s, collection chamber Altitude: 835m.a.s.l Remarks: 1210pm ***** Sample No.241/4/1998 KGM Date: 27/4/98 Source: Luiche river at the bridge - G. station Altitude: 640m.a.s.1 Remarks: ***** Sample No.242/4/1998 KGM Date: 27/4/98 Source: SW (shallow well Simbo) Altitude: 735m.a.s.1**** Remarks:
Sample No.243/4/1998 KGM Date: 27/4/98 Source: SW (shallow well Kasuku) Altitude: 760m.a.s.1 Remarks: ***** Sample No.244/4/1998 KGM Date: 27/4/98 Source: BH (Bore hole -Kasuku) RC church Altitude: Remarks: ***** Sample No.245/4/1998 KGM Date: 28/4/98 Source: BH (Bore hole) NORAD compound Altitude: 770m.a.s.1 Remarks: ****** Sample No.246/4/1998 KGM Date: 28/4/98 Source: Nyakageni spring Altitude: 740m.a.s.1 Remarks: ***** Sample No.247/4/1998 KGM Date: 28/4/98 Source: BH (Bore hole - Msimba) Altitude: 760m.a.s.1 Remarks: ***** Sample No.248/4/1998 KGM Date: 28/4/98 Source: Kabemba spring - Msimba Altitude: 740m.a.s.1 Remarks: ***** Sample No.249/4/1998 KGM Date: 28/4/98 Source: SW (15m deep) - Msimba Altitude: 750m.a.s.1 Remarks: ***** Sample No.250/4/1998 KGM Date: 28/4/98 Location: Malagarasi River (Ilagala) left Bank of the river Altitude: 760m.a.s.1

Remarks: ***** Sample No.250/4/1998 KGM Date: 28/4/98 Location: Malagarasi River (Ilagala) right Bank of the river Altitude: 760m.a.s.1 Remarks: ***** Sample No.250/4/1998 KGM Date: 28/4/98 Location: Malagarasi River (Ilagala) in the middle Bank of the river Altitude: 760m.a.s.1 Remarks: ***** Sample No.251/4/1998 KGM Date: 28/4/98 Location: Northern Malagarasi tributary Altitude: 770m.a.s.1 Remarks: ***** Sample No.159/3/1998 KGM Date: 23/3/98 Location: Rutare spring Altitude: Remarks: ***** Sample No.160/3/1998 MWTZ Date: 21/3/98 Location: Ngonya stream Altitude: Remarks: Sampling time 1200hrs ***** Sample No.161/3/1998 MWTZ Date: 21/3/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.162/3/1998 MWTZ Date: 21/3/98 Location: Ngonya stream Altitude: Remarks: Sampling time 1700hrs *********** Sample No.164/3/1998 MWTZ Date: 25/3/98

Location: Ngonya stream Altitude: Remarks: ***** Sample No.165/3/1998 MWTZ Date: 27/3/98 Location: Ngonya stream Altitude: Remarks: Sampling time 1400hrs, peak floods ********** Sample No.166/3/1998 MWTZ Date: 27/3/98 Location: Ngonva stream Altitude: Remarks: Sampling time 1700hrs, 1430hrs after floods *********** Sample No.168/3/1998 GOTZ Date: 30/3/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.169/3/1998 MWTZ Date: 30/3/98 Location: Ngonva stream Altitude: Remarks: Sampling time 1505hrs, Peak floods ******* Sample No.170/3/1998 MWTZ Date: 30/3/98 Location: Ngonya stream Altitude: Remarks: Sampling time 1750hrs ********* Sample No.171/3/1998 MWTZ Date: 30/3/98 Location: Ngonya stream Altitude: Remarks: Sampling time 1930hrs ***** Sample No.172/3/1998 MWTZ Date: 30/3/98 Location: Mwamgongo rainfall Altitude: Remarks:

Sample No.176/4/1998 MWTZ Date: 7/4/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.177/4/1998 MWTZ Date: 8/4/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.178/4/1998 MWTZ Date: 8/4/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.179/4/1998 MWTZ Date: 8/4/98 Location: Mwamgongo rainfall sample Altitude: Remarks: ***** Sample No.180/4/1998 MWTZ Date: 9/4/98 Location: Ngonva stream Altitude: Remarks: Peak floods, sampled at 1900pm ****** Sample No.181/4/1998 MWTZ Date: 9/4/98 Location: Ngonya stream Altitude: Remarks: Floods sampling time 1030hrs ***** Sample No.182/4/1998 MWTZ Date: 9/4/98 Location: Ngonya stream Altitude: Remarks: Sampling time 1330hrs ********** Sample No.183/4/1998 MWTZ Date: 9/4/98 Location: Ngonya stream Altitude:

Remarks: Sampling time 1830hrs *********** Sample No.186/4/1998 MWTZ Date: 10/4/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.187/4/1998 MWTZ Date: 11/4/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.190/4/1998 GOTZ Date: 12/4/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.191/4/1998 GOTZ Date: 14/4/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.252/4/1998 GOTZ Date: 30/4/98 Location: Mitumba stream Altitude: Remarks: 730m.a.s.1 ***** Sample No.253/4/1998 GOTZ Date: 25/4/98 Location: Mwamgongo rainfall Altitude: Remarks: ***** Sample No.254/4/1998 MWTZ Date: 25/4/98 Location: Ngonya stream Altitude: Remarks: collected at 1310hrs ***** Sample No.255/4/1998 MWTZ Date: 25/4/98 Location: Ngonya stream

Altitude: Remarks: collected at 1435hrs ***** Sample No.256/4/1998 GOTZ Date: 25/4/98 Location: Mitumba rainfall Altitude: Remarks: ***** Sample No.257/4/1998 GOTZ Date: 26/4/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.258/4/1998 GOTZ Date: 30/4/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.262/5/1998 GOTZ Date: 4/5/98 Location: Mitumba stream Altitude: Remarks: **** Sample No.266/5/1998 GOTZ Date: 6/5/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.267/5/1998 GOTZ Date: 6/5/98 Location: Mitumba rainfall Altitude: Remarks: ***** Sample No.269/5/1998 MWTZ Date: 7/5/98 Location: Ngonya stream Altitude: Remarks: Collected at 1350hrs

Sample No.270/5/1998 MWTZ Date: 7/5/98 Location: Ngonya stream Altitude: Remarks: Collected at 1700hrs ***** Sample No.271/5/1998 MWTZ Date: 7/5/98 Location: Mwamgongo rainfall Altitude: Remarks: ***** Sample No.272/5/1998 MWTZ Date: 8/5/98 Location: Ngonya stream Altitude: Remarks: Collected at 1213hrs ***** Sample No.273/5/1998 MWTZ Date: 8/5/98 Location: Ngonya stream Altitude: Remarks: Collected at 1513hrs ***** Sample No.275/5/1998 MWTZ Date: 8/5/98 Location: Mitumba rainfall Altitude: Remarks: Two days rainfall 7&8/5/98 ***** Sample No.277/5/1998 MWTZ Date: 8/5/98 Location: Mitumba stream Altitude: Remarks: Collected at 1430hrs ***** Sample No.276/5/1998 GOTZ Date: 8/5/98 Location: Mitumba stream Altitude: Remarks: Collected at 1230hrs ***** Sample No.278/5/1998 MWTZ Date: 9/5/98 Location: Mwamgongo rainfall Altitude:

Remarks: ***** Sample No.279/5/1998 MWTZ Date: 10/5/98 Location: Ngonya stream Altitude: Remarks: ***** Sample No.280/5/1998 MWTZ Date: 10/5/98 Location: Ngonya stream Altitude: Remarks: Collected at 1030hrs ***** Sample No.281/5/1998 GOTZ Date: 9/5/98 Location: Mitumba rainfall Altitude: Remarks: ***** Sample No.282/5/1998 GOTZ Date: 10/5/98 Location: Mitumba stream Altitude: Remarks: Collected at 1615hrs ***** Sample No.283/5/1998 GOTZ Date: 10/5/98 Location: Mitumba stream Altitude: Remarks: Collected at 1300hrs ***** Sample No.285/7/1998 MWTZ Date: 17/7/98 Location: Ngonya/ Mwamgongo Time: S: E: Altitude: 770m.a.s.1 Chemical data: pH: 8.13 Temp. ${}^{0}C = 22.8$ EC at 25° C, μ scm⁻¹ = 4 DO. $O_2 \% = 96.5$ Remarks: ***** Sample No.286/7/1998 MWTZ

Date: 17/7/98 Location: Rubona spring Time: S: E: Altitude: 1345m.a.s.1 Chemical data: pH: 4.97 Temp. ${}^{0}C = 22.2$ EC at 25° C, μ scm⁻¹ = 21.3 DO, $O_2 \% = 49.2$ Remarks: reducing environment ***** Sample No.287/7/1998 MWTZ Date: 17/7/98 Location: Kivumba spring(Ngonya) Time: S: E: Altitude: 1440m.a.s.1 Chemical data: pH: 5.62 Temp. ${}^{0}C = 22.0$ EC at 25° C, μ scm⁻¹ = 9.4 DO. $O_2 \% = 84.6$ Remarks: The original spring is dry but water continues to deep down at about 15m down ***** Sample No.288/7/1998 MWTZ Date: 17/7/98 Location: Nyamunini spring(Ngonya) Time: S: E: Altitude: 1015m.a.s.1 Chemical data: pH: 4.78 Temp. ${}^{0}C = 23.3$ EC at 25° C. uscm⁻¹ = 15.9 DO, O_2 % = 113.3 Remarks: Algae a lot of humus

Sample No.289/7/1998 MWTZ Date: 17/7/98 Location: Nyamunini spring Time: S: E: Altitude: 880m.a.s.1 Chemical data: pH: 5.45 Temp. ${}^{0}C = 24.3$ EC at 25° C, μ scm⁻¹ = 13.4 DO. $O_2 \% = 45.0$ Remarks: Sample taken from a protected ******* Sample No.290/7/1998 GOTZ Date: 18/7/98 Location: Mitumba stream Time: S: E: Altitude: 730m.a.s.1 Chemical data: pH: 7.21 Temp. ${}^{0}C = 21.5$ EC at 25° C, μ scm⁻¹ = 21.4 DO. $O_2 \% = 91.2$ Remarks: Reducing environment (weeds, plants) ***** Sample No.291/7/1998 GOTZ Date: 18/7/98 Location: Mitumba spring source Time: S: E: Altitude: 1060m.a.s.1 Chemical data: pH: 5.19 Temp. ${}^{0}C = 22.6$ EC at 25° C, μ scm⁻¹ = 10.2 DO, $O_2 \% = 90.5$ Remarks: Spring source (eye spring) ********** Sample No.292/7/1998 GOTZ Date: 18/7/98 Location: Mitumba spring A Time:

S:

E: Altitude: 1070m.a.s.1 Chemical data: pH: 5.25 Temp. ${}^{0}C = 23.0$ EC at 25° C, μ scm⁻¹ = 12.7 DO. $O_2 \% = 74.0$ Remarks: Reducing environment (rocky and algae) ***** Sample No.293/7/1998 GOTZ Date: 18/7/98 Location: Mitumba spring B Time: S: E: Altitude: 870m.a.s.1 Chemical data: pH: 5.50 Temp. ${}^{0}C = 23.5$ EC at 25° C, μ scm⁻¹ = 20.6 DO. $O_2 \% = 97.8$ Remarks: Reducing environment & rocky ***** Sample No.294/7/1998 MWTZ Date: 19/7/98 Location: Nyamunini spring Time: S: E: Altitude: 880m.a.s.1 Chemical data: pH: 7.02 Temp. ${}^{0}C = 21.5$ EC at 25°C, µscm⁻¹ =20.9 DO. $O_2 \% = 95.3$ Remarks: A protected spring ********** Sample No.295/7/1998 MWTZ Date: 19/7/98 Location: Ngonya stream Time: S: E: Altitude: 770m.a.s.1 Chemical data: pH: 7.66

Temp. ${}^{0}C = 24.6$ EC at 25° C, μ scm⁻¹ = 38.8 $DO_{2}O_{2}\% = 95.5$ Remarks: At gauging station ********** Sample No.296/7/1998 KGTZ Date: 21/7/98 Location: Matyazo Altitude: Remarks: Water from bore hole of 66m depth $Q = 10m^3$ ***** Sample No.296/7/1998 KGTZ Date: 21/7/98 Location: Matvazo Altitude: Remarks: Water from bore hole of 66m depth $Q = 10m^3$ ***** Sample No.297/7/1998 KGTZ Date: 21/7/98 Location: Nyaza salt mines Brine from BH-Nyamsunga RH 250m depth ********* Sample No.298/7/1998 KGTZ Date: 21/7/98 Location: Maji yard rainfall Altitude: Remarks: rainfall (20.3mm) ***** Sample No.299/7/1998 UVZ-KGTZ Date: 29/8/98 Location: Nyamsunga BH- Uvinza Altitude: Remarks: BH depth = 250m ***** Sample No.300/8/1998 UVZ-KGTZ Date: 20/8/98 Location: Nyamsunga BH- Uvinza Altitude: Remarks: depth 500ft *********** Sample No.301/8/1998 UVZ-KGTZ Date: 20/8/98 Location: Nyamsunga BH- Uvinza Altitude: Remarks: depth 500ft

Sample No.302/8/1998 UVZ-KGTZ Date: 20/8/98 Location: Malagarasi River at Uvinza Altitude: Remarks: ***** Sample No.303/8/1998 GOTZ Date: 23/8/98 Location: Mitumba stream Altitude: Remarks: Composite sample ***** Sample No.305/8/1998 MWTZ Date: 23/8/98 Location: 1.142Km off shore Ngonya Altitude: Remarks: ***** Sample No.314/8/1998 MWTZ Date: 25/8/98 Location: 3.087Km off shore Ngonya Altitude: Remarks: Sample taken 0m (Lake surface) ********** Sample No.315/8/1998 MWTZ Date: 25/8/98 Location: 3.087Km off shore Ngonya Altitude: Remarks: Sample taken at 10m (from Lake surface) ********** Sample No.316/8/1998 MWTZ Date: 25/8/98 Location: 3.087Km off shore Ngonya Altitude: Remarks: Sample taken 50m below Lake surface ****** Sample No.317/8/1998 MWTZ Date: 25/8/98 Location: 3.087Km off shore Ngonya Altitude: Remarks: Sample taken 70m (below Lake surface) ********* Sample No.318/8/1998 MWTZ Date: 25/8/98 Location: 3.087Km off shore Ngonya Altitude:

Remarks: Sample taken 70m below Lake surface *********** Sample No.319/8/1998 MWTZ Date: 25/8/98 Location: 3.087Km off shore Ngonya Altitude: Remarks: Sample taken 100m below Lake surface *********** Sample No.320/8/1998 MWTZ Date: 25/8/98 Location: 300m off shore Ngonya Altitude: Remarks: Sample taken 0m (Lake surface) ********** Sample No.321/8/1998 MWTZ Date: 25/8/98 Location: 300m off shore Ngonya Altitude: Remarks: Sample taken 10m below Lake surface *********** Sample No.322/8/1998 MWTZ Date: 25/8/98 Location: 300m off shore Ngonya Altitude: Remarks: Sample taken 50m below Lake surface ***** Sample No.323/8/1998 MWTZ Date: 25/8/98 Location: 300m off shore Ngonya Altitude: Remarks: Sample taken 70m below Lake surface *********** Sample No.324/8/1998 MWTZ Date: 25/8/98 Location: 300m off shore Ngonya Altitude: Remarks: Sample taken 90m below Lake surface *********** Sample No.325/8/1998 MWTZ Date: 25/8/98 Location: 300m off shore Ngonya Altitude: Remarks: Sample taken 100m below Lake surface ********** Sample No.326/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba

Altitude: Remarks: Sample taken 0m below Lake surface ****** Sample No.327/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba Altitude: Remarks: Sample taken 10m below Lake surface ***** Sample No.328/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba Altitude: Remarks: Sample taken 50m below Lake surface ***** Sample No.329/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba Altitude: Remarks: Sample taken 70m below Lake surface ****** Sample No.330/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba Altitude: Remarks: Sample taken 90m below Lake surface *********** Sample No.331/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba Altitude: Remarks: Sample taken 100m below Lake surface *********** Sample No.332/8/1998 GOTZ Date: 26/8/98 Location: off shore Mitumba Altitude: 278m Remarks: Sample taken 0m below Lake surface *********** Sample No.357/10/1998 MWTZ Date: 15/10/98 Location: Ngonya stream / Mwamgongo Altitude: Remarks:

Sample No.358/10/1998 GOTZ Date: 26/10/98 Location: Kakombe stream Altitude: Remarks: Flash floods ****** Sample No.359/10/1998 GOTZ Date: 26/10/98 Location: Kakombe stream Altitude: Remarks: 2 hours after flash floods ***** Sample No.362/10/1998 GOTZ Date: 27/10/98 Location: Mitumba stream Altitude: Remarks: ***** Sample No.366/10/1998 GOTZ Date: 28/10/98 Location: Mitumba stream Altitude: Remarks: 10 Samples of Rainwater Rain gauge No.--Sample No. -Date of collection R₁-370/11/98MW-23/11/98 R₂ 371/11/98MW-23/11/98 R₃-372/11/98MW-23/11/98 R₄-376/11/98MW-23/11/98 R₅-377/11/98MW-23/11/98 R₂-410/12/98MW-20/12/98 R₃-408/12/98MW-20/12/98 R₄-407/12/98MW 20/12/98 R5408/12/98MW-20/12/98

R₁420/01/98MW-09/01/98

Sample No.	Te mp	pН	EC (µscm/1)	Cl ⁻ (mg/l)	Ca ²⁺ (mg/l)	Mg ²⁺ (mg/l)	SO ₄ ²⁻ (mg/l)	HCO ₃ ⁻ (mg/l)	Fe (mg/l)	K ⁺ (mg/l)	Na ⁺ (mg/l)	NO ₃ ⁻ (mg/l)	SiO ₂ (mg/l)	PO ₄ ³⁻ (mg/l)
Ĩ	⁰ C		• /			× 8 /		× 8 /	× 8 /	× 8 /	× 8 /			
01	25	6.6	31.0	5.3	1.96	4.70	0.29	21.4	0.05	0.01	1.0			
02	25	6.8	50.0	5.3	1.96	5.90	1.15	27.5	0.08	1.0	2.0			
03	25	6.8	31.0	3.6	1.96	7.15	4.03	21.4	0.02	0.01	1.0			
04	25	6.8	29.0	5.3	1.96	5.96	0.86	27.5	0.08	0.01	0.01			
05	25	6.5	53.0	1.8	1.96	8.34	0.58	33.6	0.01	1.0	1.0			
06	25	6.5	51.0	3.6	3.93	7.15	1.15	42.7	0.01	1.0	1.0			
07/10/97GOTZ	24.0	6.5	58.5	3.6	1.96	5.96	2.30	24.4	0.01	0.01	1.0			
08/10/97MWTZ	24.2	6.9	65.0	1.8	5.89	5.30	0.58	36.6	0.01	1.0	1.0			
09/10/97GOTZ	22.3	7.1	60.0	3.6	5.89	7.74	1.15	39.7	0.01	0.01	0.01			
10/10/97GOTZ	24.2	7.2	27.0	3.6	1.96	4.76	0.58	21.4	0.01	0.01	1.0			
11/10/97MWTZ	24.3	6.1	28.0	2.7	1.96	4.76	0.58	18.3	0.01	2.0	1.0			
12/10/97MWTZ	24.8	6.3	29.2	3.6	3.96	4.76	1.15	24.4	0.07	0.01	0.01			
13/10/97MWTZ	26.7	7.3	53.0	3.6	3.93	7.74	0.58	36.6	0.01	1.0	1.0			
14/10/97GOTZ	22.7	7.5	13.2	1.8	0.01	4.17	2.88	12.2	0.01	0.01	1.0			
15/10/97GOTZ	22.8	7.2	19.2	5.3	0.01	4.76	1.73	18.3	0.01	0.01	0.01			
16/10/97GOTZ	23.7	7.6	31.0	1.8	0.98	6.56	2.02	21.4	0.01	1.0	0.01			

Appendix 4 : LIST OF CHEMICAL DATA

17/10/97GOTZ	25.0	7.4	32.0	3.6	0.98	4.17	1.44	24.4	0.01	1.5	0.01		
18/11/97MWTZ	26.9	7.2	98.1	5.3	1.96	8.30	72.58	27.5	0.99	4.0	4.0		
19/11/97MWTZ	22.8	7.1	65.0	1.8	0.98	8.93	0.86	27.5	0.01	0.01	0.01		
20/11/97MWTZ	29.3	7.1	48.0	3.6	0.98	8.34	11.1	30.5	0.18	1.0	0.01		
21/11/97MWTZ	24.0	7.3	90.1	3.6	3.93	7.15	0.32	12.2	0.01	0.01	0.01		
22/11/97MWTZ	23.1	6.9	62.5	5.3	0.01	5.96	1.73	21.4	0.01	3.5	2.0		
23/11/97MWTZ	24.6	7.1	48.0	3.6	5.89	4.76	2.88	33.6	0.01	1.0	0.01		
24/11/97GOTZ	23.3	7.0	59.0	7.1	0.01	7.15	4.32	24.4	0.01	3.0	1.0		
25/11/97GOTZ	20.8	6.9	27.4	7.1	0.01	4.76	2.02	12.2	0.01	1.0	0.01		
26/11/97GOTZ	22.8	6.7	27.0	5.3	0.01	5.96	0.86	12.2	0.01	1.0	0.01		
31/11/97	25	6.3	13.5	0.01	0.01	0.01	0.01	61.02	0.01	0.5	0.01		
37/11/97	25	6.3	8.1	0.01	0.01	0.01	0.32	61.02	0.01	0.01	0.01		
49/11/97	25	7.1	6.1	0.01	0.01	0.01	0.01	61.02	0.01	0.5	0.01		
43/12/97	25	7.0	4.1	0.01	0.01	0.01	2.30	61.02	0.01	0.01	0.01		
54/12/97MWTZ	22.5	6.7	46.0	1.8	3.93	5.96	0.01	62.0	0.01	0.5	1.0		
55/12/97GOTZ	23.8	6.7	22.2	3.5	4.91	5.36	2.02	30.0	0.01	0.01	1.0		
56/12/97GOTZ	21.7	6.6	10.2	3.5	0.01	5.96	0.01	24.0	0.01	0.01	1.0		
57/12/97GOTZ	22.2	6.3	8.2	3.5	0.01	4.76	1.73	18.0	0.01	0.01	0.01		
58/12/97GOTZ	22.4	6.4	15.0	7.1	0.01	4.76	1.44	22.0	0.01	0.01	1.0		
59/12/97GOTZ	22.5	6.4	15.3	5.3	1.96	4.76	0.68	14.0	0.01	0.01	1.0		
60/12/97GOTZ	23.0	6.3	17.1	5.3	1.96	3.57	2.30	16.0	0.01	0.01	1.0		
61/12/97GOTZ	23.0	6.4	21.3	3.5	1.96	4.76	0.49	22.0	0.01	0.01	1.0		
62/12/97MWTZ	24.5	6.4	34.0	5.3	3.93	7.15	7.49	24.0	2.89	1.0	3.0		
63/12/97MWTZ	24.3	6.6	43.0	5.3	3.93	7.15	1.68	30.0	0.17	0.5	3.0		

64/12/97MWTZ	24.1	6.5	46.0	1.8	4.91	7.15	1.15	36.0	0.01	0.5	1.0			
65/12/97MWTZ	22.3	7.0	61.0	0.01	4.91	10.12	2.02	46.0	0.01	0.01	1.0			
67/12/97MWTZ	23.7	6.5	18.3	0.01	1.96	7.15	0.86	22.0	0.01	0.01	1.0			
68/12/97MWTZ	23.1	6.5	33.0	1.8	1.96	5.96	1.44	28.0	0.01	0.5	1.0			
69/12/97MWTZ	21.2	6.6	15.0	1.8	0.98	5.36	1.44	20.0	0.01	1.0	1.0			
70/12/97MWTZ	23.2	5.5	14.7	1.8	0.98	4.76	2.30	12.0	0.01	0.01	0.01			
71/12/97MWTZ	24.2	6.7	41.0	1.8	5.89	5.96	1.73	12.0	0.06	0.01	1.0			
72/12/97MWTZ	22.9	6.9	68.0	1.8	6.87	11.32	1.44	34.0	0.01	0.01	1.0			
73/12/97MWTZ	23.1	6.7	22.8	1.8	3.93	4.76	0.86	26.0	0.01	0.01	1.0			
74/12/97MWTZ	25.0	6.8	49.0	3.5	4.91	6.55	6.34	36.0	0.02	1.5	1.0			
75/12/97MWTZ	25.0	7.3	54.0	3.3	3.2	9.62	0.01	124.9	0.01	1.0	0.01	1.056	1.760	0.350
77/12/97MWTZ	25.0	6.4	55.0	6.0	5.9	6.00	0.01	49.9	0.01	0.5	0.01	1.122	1.760	0.295
78/12/97MWTZ	25.0	6.6	53.0	4.7	7.9	6.00	0.01	43.7	0.18	0.1	1.0	0.924	1.760	0.265
80/12/97MWTZ	25.0	7.4	58.0	3.3	39.7	96.20	0.01	62.4	0.01	0.5	0.01	0.968	1.760	0.370
82/12/97GOTZ	25.0	6.8	54.0	3.3	39.7	72.20	0.01	62.4	0.01	0.01	0.01	0.792	1.760	0.360
83/12/97GOTZ	25.0	6.7	27.9	6.7	39.7	96.2	0.86	62.4	0.01	0.01	0.01	0.814	1.760	0.360
84/12/97MWTZ	25.0	6.9	51.0	6.7	39.7	96.2	0.01	62.4	0.03	0.5	1.0	1.078	1.760	0.410
85/12/97GOTZ	25.0	6.8	28.8	6.7	ND	144.4	1.15	62.4	0.01	1.5	1.0	0.968	1.760	0.350
86/12/97MWTZ	25.0	7.7	50.0	6.7	39.7	96.0	0.01	62.4	0.01	0.1	1.0	0.704	1.760	0.310
87/12/97GOTZ	25.0	6.9	25.2	6.0	2.0	7.2	1.73	31.2	0.01	0.5	1.0	0.528	1.760	0.345
88/12/97MWTZ	25.0	7.3	52.0	6.7	39.7	120.0	0.86	62.4	0.01	0.5	0.01	0.902	1.760	0.330
89/12/97MWTZ	25.0	6.8	50.0	6.7	39.7	96.0	0.86	62.4	0.01	0.5	1.0	0.682	1.760	0.355
91/12/97MWTZ	25.0	7.3	56.0	3.3	39.7	96.0.0	0.58	62.4	0.01	0.5	1.0	1.012	1.760	0.365
93/12/97MWTZ	25.0	7.3	53.0	6.7	39.7	144.4	0.29	124.9	0.01	0.5	1.0	1.254	1.760	0.370

94/12/97MWTZ	25.0	6.6	52.0	4.7	5.6	0.01	0.01	49.9	0.02	0.5	0.01	0.924	1.760	0.425
96/01/98MWTZ	25.0	6.7	68.0	5.3	4.8	23.6	0.29	49.9	0.05	1.0	1.0	0.660	1.760	0.275
98/01/98MWTZ	25.0	6.8	53.0	4.0	2.4	23.8	2.59	49.9	0.49	1.0	1.0	1.078	1.760	0.410
99/01/98MWTZ	25.0	6.6	52.0	5.3	6.0	19.3	0.01	56.2	0.05	0.5	0.01	1.584	1.760	0.320
101/01/98MWTZ	25.0	7.5	52.0	6.7	39.7	96.2	0.01	62.4	0.01	0.5	1.0	1.342	1.760	0.555
102/01/98GOTZ	25.0	7.3	23.7	3.3	39.7	144.4	0.01	62.4	0.01	0.01	2.0	0.836	1.760	0.430
103/01/98GOTZ	25.0	6.7	22.7	4.7	3.2	20.2	1.15	25.0	0.04	0.5	0.01	0.968	1.760	0.380
104/010/98GOTZ	25.0	8.0	440.0	23.3	9.9	44.5	0.58	312.2	0.01	17.5	22.0	0.528	1.760	0.200
105/01/98 MWTZ	25.0	6.5	53.5	6.0	7.1	18.5	0.86	56.2	0.01	1.0	0.01	1.518	1.760	0.330
106/01/98 MWTZ	25.0	6.6	55.0	6.7	6.0	20.5	0.01	43.7	0.09	1.0	0.01	1.584	1.760	0.465
107/01/98 MWTZ	25.0	8.0	31.0	16.7	39.7	120.3	0.86	187.3	0.01	14.0	26	1.144	1.760	0.295
108/01/98 GOTZ	25.0	8.0	600.0	34.0	11.9	59.0	6.62	430.8	0.01	24.0	32	0.330	1.256	0.100
109/01/98 MWTZ	25.0	7.0	12.6	6.7	0.01	96.2	1.73	62.4	0.01	0.5	0.01	0.594	1.760	0.245
110/01/98 MWTZ	25.0	6.8	15.6	10.0	0.01	96.2	0.01	62.4	0.01	ND	0.01	1.936	1.760	0.275
111/01/98 MWTZ	25.0	7.2	22.8	6.7	0.01	120.3	0.01	62.4	0.01	ND	0.01	1.188	1.760	0.245
112/01/98 MWTZ	25.0	6.6	64.0	8.0	13.9	4.8	0.58	62.4	0.03	ND	0.01	0.682	1.760	0.245
113/01/98 MWTZ	25.0	6.8	18.9	6.7	0.01	120.3	0.01	62.4	0.03	ND	0.01	0.748	1.760	0.380
114/01/98 MWTZ	25.0	7.1	32.0	6.7	2.0	19.3	0.86	31.2	0.08	0.5	0.01	1.496	1.760	0.235
115/01/98 MWTZ	25.0	7.4	62.0	5.3	3.2	23.2	0.01	43.7	0.11	2.0	1.0	0.440	1.760	0.385
116/01/98 MWTZ	25.0	7.0	50.0	3.3	39.7	96.2	1.44	62.4	0.01	0.5	0.1	0.616	1.760	0.315
117/01/98 MWTZ	25.0	7.4	52.0	6.7	39.7	120.3	0.01	62.4	0.01	0.5	0.1	0.283	1.760	0.260
118/01/98 MWTZ	25.0	8.5	610.0	33.3	39.7	144.4	2.02	437.0	0.03	27.0	60	0.264	1.228	0.135
120/01/98 MWTZ	25.0	7.0	154.5	7.3	23.8	15.6	3.17	112.4	0.13	6.0	1.0	0.836	1.760	0.280
121/01/98 MWTZ	25.0	7.9	180.0	6.7	79.4	96.2	0.58	187.3	0.16	8.5	1.0	0.572	1.760	0.245

12401/98GOTZ 25.0 6.7 24.3 4.7 ND 20.5 0.86 31.2 0.04 0.5 0.1 0.704 1.760 0.355 12501/98MWTZ 25.0 6.5 53.0 5.3 7.9 20.5 1.73 49.9 0.30 1.0 0.01 1.760 1.760 0.415 12801/98GOTZ 25.0 6.5 53.0 5.3 7.9 20.5 1.73 49.9 0.30 1.0 0.01 1.760 0.415 12801/98GOTZ 25.0 6.7 21.9 6.0 2.0 19.3 0.01 31.2 0.01 0.5 0.01 0.461 1.760 0.365 1360298MWTZ 25.0 6.7 21.9 6.0 2.0 13.3 0.01 0.5 0.01 0.448 1.760 0.375 1370298MWTZ 25.0 6.7 41.0 4.7 4.0 21.3 0.01 37.5 0.20 1.5 1.0 1.254 1.760 0.275 1390298MWTZ 25.0 6.7 41.0 6.7 6.0 2	123/01/98MWTZ	25.0	7.2	50.0	6.7	39.7	96.2	1.73	62.4	0.01	1.0	0.11	1.936	1.760	0.275
12501/98MWTZ 25.0 7.2 52.0 6.7 39.7 120.3 0.01 62.4 0.63 1.0 2.0 1.760 1.760 0.395 127/01/98MWTZ 25.0 6.5 53.0 5.3 7.9 20.5 1.73 49.9 0.30 1.0 0.01 1.760 0.415 128/01/98GOTZ 25.0 6.7 21.9 6.0 2.0 19.3 0.01 31.2 0.01 0.5 0.01 0.748 1.760 0.365 129/02/98GOTZ 25.0 6.7 21.9 6.0 2.0 19.3 0.01 31.2 0.01 0.5 0.01 0.748 1.760 0.365 137/02/98MWTZ 25.0 6.7 44.0 6.7 39.7 96.2 0.86 62.4 0.13 0.5 1.0 1.452 1.760 0.305 138/02/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.05 0.5 1.0 1.254 1.760 0.225 14/02/98MWTZ 25.0 6.5 41.0 <td>124/01/98GOTZ</td> <td>25.0</td> <td>6.7</td> <td>24.3</td> <td>4.7</td> <td>ND</td> <td>20.5</td> <td>0.86</td> <td>31.2</td> <td>0.04</td> <td>0.5</td> <td>0.1</td> <td>0.704</td> <td>1.760</td> <td>0.355</td>	124/01/98GOTZ	25.0	6.7	24.3	4.7	ND	20.5	0.86	31.2	0.04	0.5	0.1	0.704	1.760	0.355
127/01/98MWTZ 25.0 6.5 53.0 5.3 7.9 20.5 1.73 49.9 0.30 1.0 0.01 1.760 1.760 0.415 128/01/98GOTZ 25.0 6.9 23.7 1.7 4.0 20.5 1.44 25.0 0.08 0.5 0.01 0.748 1.760 0.370 129/02/98GOTZ 25.0 6.7 21.9 6.0 2.0 19.3 0.01 31.2 0.01 0.5 0.01 0.616 1.760 0.365 136/02/98MWTZ 25.0 7.4 42.0 6.7 39.7 96.2 0.01 124.9 0.01 0.5 0.1 1.452 1.760 0.375 137/02/98MWTZ 25.0 6.9 43.0 4.7 4.0 21.3 0.01 37.5 0.20 1.5 1.0 1.452 1.760 0.275 139/02/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.23 1.0 1.0 1.254 1.760 0.205 140/02/98MWTZ 25.0 6.5 </td <td>125/01/98MWTZ</td> <td>25.0</td> <td>7.2</td> <td>52.0</td> <td>6.7</td> <td>39.7</td> <td>120.3</td> <td>0.01</td> <td>62.4</td> <td>0.63</td> <td>1.0</td> <td>2.0</td> <td>1.760</td> <td>1.760</td> <td>0.395</td>	125/01/98MWTZ	25.0	7.2	52.0	6.7	39.7	120.3	0.01	62.4	0.63	1.0	2.0	1.760	1.760	0.395
12801/98GOTZ 25.0 6.9 23.7 1.7 4.0 20.5 1.44 25.0 0.08 0.5 0.01 0.748 1.760 0.370 129/02/98GOTZ 25.0 6.7 21.9 6.0 2.0 19.3 0.01 31.2 0.01 0.5 0.01 0.66 1.760 0.365 136/02/98MWTZ 25.0 7.4 42.0 6.7 39.7 96.2 0.86 62.4 0.13 0.5 1.0 1.452 1.760 0.375 137/02/98MWTZ 25.0 6.9 43.0 4.7 4.0 21.3 0.01 37.5 0.20 1.5 1.0 1.452 1.760 0.275 139/02/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.23 1.0 1.0 1.24 1.760 0.225 14/02/98MWTZ 25.0 6.5 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 <	127/01/98MWTZ	25.0	6.5	53.0	5.3	7.9	20.5	1.73	49.9	0.30	1.0	0.01	1.760	1.760	0.415
129/02/98GOTZ 25.0 6.7 21.9 6.0 2.0 19.3 0.01 31.2 0.01 0.5 0.01 0.616 1.760 0.365 13602/98MWTZ 25.0 7.4 42.0 6.7 39.7 96.2 0.86 62.4 0.13 0.5 1.0 1.452 1.760 0.375 13702/98MWTZ 25.0 7.2 42.0 3.3 39.7 96.2 0.01 124.9 0.01 0.5 0.1 1.584 1.760 0.305 13802/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.23 1.0 1.0 1.254 1.760 0.202 14002/98MWTZ 25.0 6.5 41.0 6.0 7.1 18.5 0.58 43.7 0.04 0.5 0.1 1.144 1.760 0.225 14102/98MWTZ 25.0 6.6 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 0.1 1.144 1.760 0.255 1420298MWTZ 25.0 6.8	128/01/98GOTZ	25.0	6.9	23.7	1.7	4.0	20.5	1.44	25.0	0.08	0.5	0.01	0.748	1.760	0.370
13602/98MWTZ 25.0 7.4 42.0 6.7 39.7 96.2 0.86 62.4 0.13 0.5 1.0 1.452 1.760 0.375 137/02/98MWTZ 25.0 7.2 42.0 3.3 39.7 96.2 0.01 124.9 0.01 0.5 0.1 1.584 1.760 0.305 138/02/98MWTZ 25.0 6.9 43.0 4.7 4.0 21.3 0.01 37.5 0.20 1.5 1.0 1.254 1.760 0.275 139/02/98MWTZ 25.0 6.5 41.0 6.0 7.1 18.5 0.58 43.7 0.05 0.5 1.0 1.254 1.760 0.225 14/02/98MWTZ 25.0 6.6 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 0.1 1.144 1.760 0.255 14/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.58 124.9 0.01 0.1 0.1 0.142 1.760 1.455 14/02/98MWTZ 25.0 6.8	129/02/98GOTZ	25.0	6.7	21.9	6.0	2.0	19.3	0.01	31.2	0.01	0.5	0.01	0.616	1.760	0.365
137/02/98MWTZ 25.0 7.2 42.0 3.3 39.7 96.2 0.01 124.9 0.01 0.5 0.1 1.584 1.760 0.305 138/02/98MWTZ 25.0 6.9 43.0 4.7 4.0 21.3 0.01 37.5 0.20 1.5 1.0 1.254 1.760 0.275 139/02/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.23 1.0 1.0 1.254 1.760 0.202 140/02/98MWTZ 25.0 6.6 41.0 6.0 7.1 18.5 0.58 43.7 0.04 0.5 0.1 1.144 1.760 0.225 141/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.01 62.4 0.01 0.1 0.124 1.760 0.455 144/02/98MWTZ 25.0 7.0 42.0 8.0 2.0 8.4 0.86 25.0 0.01 0.5 1.0	136/02/98MWTZ	25.0	7.4	42.0	6.7	39.7	96.2	0.86	62.4	0.13	0.5	1.0	1.452	1.760	0.375
138/02/98MWTZ 25.0 6.9 43.0 4.7 4.0 21.3 0.01 37.5 0.20 1.5 1.0 1.254 1.760 0.275 139/02/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.23 1.0 1.0 1.254 1.760 0.020 140/02/98MWTZ 25.0 6.5 41.0 6.0 7.1 18.5 0.58 43.7 0.05 0.5 1.0 0.792 1.760 0.225 141/02/98MWTZ 25.0 6.6 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 0.1 1.144 1.760 0.255 142/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.58 124.9 0.01 0.5 1.0 1.012 1.760 1.35 159/03/98KGTZ 25.0 7.0 42.0 8.0 2.0 8.4 0.86 25.0 0.01 0.55	137/02/98MWTZ	25.0	7.2	42.0	3.3	39.7	96.2	0.01	124.9	0.01	0.5	0.1	1.584	1.760	0.305
139/02/98MWTZ 25.0 6.7 41.0 4.7 6.0 22.9 1.44 43.7 0.23 1.0 1.0 1.254 1.760 0.020 140/02/98MWTZ 25.0 6.5 41.0 6.0 7.1 18.5 0.58 43.7 0.05 0.5 1.0 0.792 1.760 0.225 141/02/98MWTZ 25.0 6.6 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 0.1 1.144 1.760 0.255 142/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.01 62.4 0.01 0.1 0.10 0.924 1.760 0.445 144/02/98MWTZ 25.0 6.8 0.01 3.3 39.7 120.3 0.58 124.9 0.01 0.5 1.0 1.012 1.760 1.135 159/03/98KGTZ 25.0 7.0 42.0 8.0 2.0 8.4 13.47 49.9 0.46 1.0	138/02/98MWTZ	25.0	6.9	43.0	4.7	4.0	21.3	0.01	37.5	0.20	1.5	1.0	1.254	1.760	0.275
140/02/98MWTZ 25.0 6.5 41.0 6.0 7.1 18.5 0.58 43.7 0.05 0.5 1.0 0.792 1.760 0.225 141/02/98MWTZ 25.0 6.6 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 0.1 1.144 1.760 0.255 142/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.01 62.4 0.01 0.1 0.12 1.760 0.445 144/02/98MWTZ 25.0 6.8 0.01 3.3 39.7 120.3 0.58 124.9 0.01 0.5 1.0 1.012 1.760 1.135 159/03/98KGTZ 25.0 6.8 0.01 3.2 17.3 0.01 0.01 1.21 1.5 1.0 1.0 1.60 1.161/03/98MWTZ 25.0 7.2 48.0 6.7 2.0 8.4 13.47 49.9 0.46 1.0 1.0 1.0 1.0 1.0	139/02/98MWTZ	25.0	6.7	41.0	4.7	6.0	22.9	1.44	43.7	0.23	1.0	1.0	1.254	1.760	0.020
141/02/98MWTZ 25.0 6.6 41.0 6.7 6.0 20.5 0.86 43.7 0.04 0.5 0.1 1.144 1.760 0.255 142/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.01 62.4 0.01 0.1 0.1 0.924 1.760 0.445 144/02/98MWTZ 25.0 6.8 0.01 3.3 39.7 120.3 0.58 124.9 0.01 0.5 1.0 1.012 1.760 1.135 159/03/98KGTZ 25.0 7.0 42.0 8.0 2.0 8.4 0.86 25.0 0.01 0.5 1.0 1.02 1.760 1.135 160/03/98MWTZ 25.0 7.0 42.0 8.0 2.0 8.4 13.47 49.9 0.46 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.63/03/98/WTZ 25.0 7.7 49.0 4.7 4.0 9.6 4.32 43.7 0.30 1.0 0.01 1.0 1.0 1.0 1.0 1.163/03/98/WTZ 25.0 <	140/02/98MWTZ	25.0	6.5	41.0	6.0	7.1	18.5	0.58	43.7	0.05	0.5	1.0	0.792	1.760	0.225
142/02/98MWTZ 25.0 7.1 56.0 3.3 39.7 120.3 0.01 62.4 0.01 0.1 0.1 0.924 1.760 0.445 144/02/98MWTZ 25.0 6.8 0.01 3.3 39.7 120.3 0.58 124.9 0.01 0.5 1.0 1.012 1.760 1.135 159/03/98KGTZ 25.0 7.0 42.0 8.0 2.0 8.4 0.86 25.0 0.01 0.5 1.0 1.012 1.760 1.135 160/03/98MWTZ 25.0 6.9 47.0 8.0 3.2 17.3 0.01 0.01 1.21 1.5 1.0 121 1.5 1.0 121 1.5 1.0 <td>141/02/98MWTZ</td> <td>25.0</td> <td>6.6</td> <td>41.0</td> <td>6.7</td> <td>6.0</td> <td>20.5</td> <td>0.86</td> <td>43.7</td> <td>0.04</td> <td>0.5</td> <td>0.1</td> <td>1.144</td> <td>1.760</td> <td>0.255</td>	141/02/98MWTZ	25.0	6.6	41.0	6.7	6.0	20.5	0.86	43.7	0.04	0.5	0.1	1.144	1.760	0.255
144/02/98MWTZ 25.0 6.8 0.01 3.3 39.7 120.3 0.58 124.9 0.01 0.5 1.0 1.012 1.760 1.135 159/03/98KGTZ 25.0 7.0 42.0 8.0 2.0 8.4 0.86 25.0 0.01 0.5 1.0 1.012 1.760 1.135 160/03/98MWTZ 25.0 6.9 47.0 8.0 3.2 17.3 0.01 0.01 1.21 1.5 1.0 161/03/98MWTZ 25.0 7.2 48.0 6.7 2.0 8.4 13.47 49.9 0.46 1.0 1.0 162/03/98MWTZ 25.0 7.7 49.0 4.7 4.0 9.6 4.32 43.7 0.30 1.0 0.01 163/03/98MWTZ 25.0 7.7 49.0 6.7 4.0 9.6 0.29 124.9 0.20 1.0 0.01 163/03/98MWTZ 25.0 7.0 48.0 7.3 2.0 8.4 2.59	142/02/98MWTZ	25.0	7.1	56.0	3.3	39.7	120.3	0.01	62.4	0.01	0.1	0.1	0.924	1.760	0.445
159/03/98KGTZ 25.0 7.0 42.0 8.0 2.0 8.4 0.86 25.0 0.01 0.5 1.0 1.0 160/03/98MWTZ 25.0 6.9 47.0 8.0 3.2 17.3 0.01 0.01 1.21 1.5 1.0 1.0 161/03/98MWTZ 25.0 7.2 48.0 6.7 2.0 8.4 13.47 49.9 0.46 1.0 1.0 1.0 1.0 1.6 1.60/03/98MWTZ 25.0 7.7 49.0 4.7 4.0 9.6 4.32 43.7 0.30 1.0 0.01 0.01 1.0 0.01 1.0 1.0 1.0 1.0 1.0 1.63/03/98MWTZ 25.0 6.4 45.0 6.7 4.0 9.6 0.29 124.9 0.20 1.0 0.01 1.0 0.01 1.0	144/02/98MWTZ	25.0	6.8	0.01	3.3	39.7	120.3	0.58	124.9	0.01	0.5	1.0	1.012	1.760	1.135
160/03/98MWTZ 25.0 6.9 47.0 8.0 3.2 17.3 0.01 0.01 1.21 1.5 1.0 161/03/98MWTZ 25.0 7.2 48.0 6.7 2.0 8.4 13.47 49.9 0.46 1.0 1.0 1.0 1.0 <t< td=""><td>159/03/98KGTZ</td><td>25.0</td><td>7.0</td><td>42.0</td><td>8.0</td><td>2.0</td><td>8.4</td><td>0.86</td><td>25.0</td><td>0.01</td><td>0.5</td><td>1.0</td><td></td><td></td><td></td></t<>	159/03/98KGTZ	25.0	7.0	42.0	8.0	2.0	8.4	0.86	25.0	0.01	0.5	1.0			
161/03/98MWTZ 25.0 7.2 48.0 6.7 2.0 8.4 13.47 49.9 0.46 1.0 1.0 1.0 1.0 162/03/98MWTZ 25.0 7.7 49.0 4.7 4.0 9.6 4.32 43.7 0.30 1.0 0.01 0.01 163/03/98MWTZ 25.0 6.4 45.0 6.7 4.0 9.6 0.29 124.9 0.20 1.0 0.01 0.01 0.01 164/03/98MWTZ 25.0 6.4 45.0 6.7 4.0 9.6 0.29 124.9 0.20 1.0 0.01 0.	160/03/98MWTZ	25.0	6.9	47.0	8.0	3.2	17.3	0.01	0.01	1.21	1.5	1.0			
162/03/98MWTZ 25.0 7.7 49.0 4.7 4.0 9.6 4.32 43.7 0.30 1.0 0.01 163/03/98MWTZ 25.0 6.4 45.0 6.7 4.0 9.6 0.29 124.9 0.20 1.0 0.01 1.0 0.01 <td< td=""><td>161/03/98MWTZ</td><td>25.0</td><td>7.2</td><td>48.0</td><td>6.7</td><td>2.0</td><td>8.4</td><td>13.47</td><td>49.9</td><td>0.46</td><td>1.0</td><td>1.0</td><td></td><td></td><td></td></td<>	161/03/98MWTZ	25.0	7.2	48.0	6.7	2.0	8.4	13.47	49.9	0.46	1.0	1.0			
163/03/98MWTZ 25.0 6.4 45.0 6.7 4.0 9.6 0.29 124.9 0.20 1.0 0.01	162/03/98MWTZ	25.0	7.7	49.0	4.7	4.0	9.6	4.32	43.7	0.30	1.0	0.01			
164/03/98MWTZ 25.0 7.0 48.0 7.3 2.0 8.4 2.59 56.2 0.26 1.0 0.01 165/03/98 MWTZ 25.0 6.5 45.0 5.3 2.0 10.8 19.30 49.9 3.43 2.0 0.11 166/03/98 MWTZ 25.0 7.3 54.5 8.0 4.8 9.6 3.46 62.4 0.39 1.0 0.1 167/03/98 MWTZ 25.0 7.0 50.0 4.7 2.0 8.4 6.92 49.9 1.23 1.5 1.0 <td>163/03/98MWTZ</td> <td>25.0</td> <td>6.4</td> <td>45.0</td> <td>6.7</td> <td>4.0</td> <td>9.6</td> <td>0.29</td> <td>124.9</td> <td>0.20</td> <td>1.0</td> <td>0.01</td> <td></td> <td></td> <td></td>	163/03/98MWTZ	25.0	6.4	45.0	6.7	4.0	9.6	0.29	124.9	0.20	1.0	0.01			
165/03/98 MWTZ 25.0 6.5 45.0 5.3 2.0 10.8 19.30 49.9 3.43 2.0 0.11 166/03/98 MWTZ 25.0 7.3 54.5 8.0 4.8 9.6 3.46 62.4 0.39 1.0 0.1 167/03/98 MWTZ 25.0 7.0 50.0 4.7 2.0 8.4 6.92 49.9 1.23 1.5 1.0 168/03/98 GOTZ 25.0 6.9 141.0 6.7 2.4 10.6 0.01 0.01 0.29 16.5 1.0	164/03/98MWTZ	25.0	7.0	48.0	7.3	2.0	8.4	2.59	56.2	0.26	1.0	0.01			
166/03/98 MWTZ 25.0 7.3 54.5 8.0 4.8 9.6 3.46 62.4 0.39 1.0 0.1 1.0 167/03/98 MWTZ 25.0 7.0 50.0 4.7 2.0 8.4 6.92 49.9 1.23 1.5 1.0 1.0 168/03/98 GOTZ 25.0 6.9 141.0 6.7 2.4 10.6 0.01 0.01 0.29 16.5 1.0	165/03/98 MWTZ	25.0	6.5	45.0	5.3	2.0	10.8	19.30	49.9	3.43	2.0	0.11			
167/03/98 MWTZ 25.0 7.0 50.0 4.7 2.0 8.4 6.92 49.9 1.23 1.5 1.0 168/03/98 GOTZ 25.0 6.9 141.0 6.7 2.4 10.6 0.01 0.01 0.29 16.5 1.0	166/03/98 MWTZ	25.0	7.3	54.5	8.0	4.8	9.6	3.46	62.4	0.39	1.0	0.1			
168/03/98 GOTZ 25.0 6.9 141.0 6.7 2.4 10.6 0.01 0.29 16.5 1.0	167/03/98 MWTZ	25.0	7.0	50.0	4.7	2.0	8.4	6.92	49.9	1.23	1.5	1.0			
	168/03/98 GOTZ	25.0	6.9	141.0	6.7	2.4	10.6	0.01	0.01	0.29	16.5	1.0			

17003/98 MWTZ 25.0 7.0 71.0 6.0 10.8 18.35 62.4 2.60 2.0 0.1 171/03/98 MWTZ 25.0 6.8 70.0 8.0 6.4 12.0 6.73 62.4 2.00 1.5 1.0 17203/98 MWTZ 25.0 6.9 11.1 8.0 2.4 0.01 0.01 0.01 0.5 0.1 17604/98 MWTZ 25.0 6.9 46.0 6.7 3.2 14.4 0.01 0.01 0.24 1.0 1.0 1770498 GOTZ 25.0 7.7 24.6 5.3 1.6 11.1 1.7 25.0 0.6 48 6.7 2.0 8.4 0.58 49.9 0.06 1.0 2.0 1.0 <t< th=""><th></th><th>169/03/98 MWTZ</th><th>25.0</th><th>6.8</th><th>45.0</th><th>8.0</th><th>2.0</th><th>10.8</th><th>16.70</th><th>56.2</th><th>3.09</th><th>2.5</th><th>1.0</th><th></th><th></th></t<>		169/03/98 MWTZ	25.0	6.8	45.0	8.0	2.0	10.8	16.70	56.2	3.09	2.5	1.0		
171/03/98 MWTZ 25.0 6.8 70.0 8.0 6.4 12.0 6.73 62.4 2.20 1.5 1.0 172/03/98 MWTZ 25.0 6.9 11.1 8.0 2.4 0.01 0.01 0.01 0.5 0.1 176/04/98 MWTZ 25.0 6.9 46.0 6.7 3.2 14.4 0.01 0.01 0.24 1.0 1.0 177/04/98 GOTZ 25.0 6.7 24.6 5.3 1.6 13.5 0.86 31.2 0.01 0.5 1.0 1.0 1.0 1.0	ľ	170/03/98 MWTZ	25.0	7.0	71.0	6.0	6.0	10.8	18.35	62.4	2.60	2.0	0.1		
172/03/98 MWTZ 25.0 6.9 11.1 8.0 2.4 0.01 0.01 0.01 0.5 0.1 176/04/98 MWTZ 25.0 6.9 46.0 6.7 3.2 14.4 0.01 0.01 0.24 1.0 1.0 1.0 177/04/98 GOTZ 25.0 7.7 24.6 5.3 1.6 13.5 0.86 31.2 0.01 0.5 1.0 178/04/98 MWTZ 25.0 6.6 48 6.7 2.0 8.4 0.58 49.9 0.06 1.0 2.0 179/04/98 MWTZ 25.0 6.9 12.6 5.3 1.6 11.1 1.73 25.0 0.02 0.5 0.1 18/04/98 MWTZ 25.0 6.7 39.0 7.3 2.4 10.6 105.98 43.7 10.02 4.0 1.0 18/04/98 MWTZ 25.0 6.5 44.0 7.3 2.0 8.4 15.26 43.7 1.74 2.0 2.0 18/04/98 MWTZ 25.0 6.5 <td>ĺ</td> <td>171/03/98 MWTZ</td> <td>25.0</td> <td>6.8</td> <td>70.0</td> <td>8.0</td> <td>6.4</td> <td>12.0</td> <td>6.73</td> <td>62.4</td> <td>2.20</td> <td>1.5</td> <td>1.0</td> <td></td> <td></td>	ĺ	171/03/98 MWTZ	25.0	6.8	70.0	8.0	6.4	12.0	6.73	62.4	2.20	1.5	1.0		
17604/98 MWTZ 25.0 6.9 46.0 6.7 3.2 14.4 0.01 0.01 0.24 1.0 1.0 17704/98 GOTZ 25.0 7.7 24.6 5.3 1.6 13.5 0.86 31.2 0.01 0.5 1.0 178/04/98 MWTZ 25.0 6.6 48 6.7 2.0 8.4 0.58 49.9 0.06 1.0 2.0 179/04/98 MWTZ 25.0 6.9 12.6 5.3 1.6 11.1 1.73 25.0 0.02 0.5 0.1 18/04/98 MWTZ 25.0 6.7 39.0 7.3 2.4 10.6 105.98 43.7 10.20 4.0 1.0 18/04/98 MWTZ 25.0 6.9 43.0 8.0 2.4 11.6 2.02 37.5 6.70 3.0 2.0 18/04/98 MWTZ 25.0 6.5 44.0 7.3 2.0 8.4 15.26 43.7 1.74 2.0 2.0 18/04/98 GOTZ 25.0	ľ	172/03/98 MWTZ	25.0	6.9	11.1	8.0	2.4	0.01	0.01	0.01	0.01	0.5	0.1		
177/04/98 GOTZ 25.0 7.7 24.6 5.3 1.6 13.5 0.86 31.2 0.01 0.5 1.0 178/04/98 MWTZ 25.0 6.6 48 6.7 2.0 8.4 0.58 49.9 0.06 1.0 2.0 179/04/98 MWTZ 25.0 6.9 12.6 5.3 1.6 11.1 1.73 25.0 0.02 0.5 0.1 180/04/98 MWTZ 25.0 6.7 39.0 7.3 2.4 10.6 105.98 43.7 10.20 4.0 1.0 1.0 1.0 1.0 1.0 1.0	ĺ	176/04/98 MWTZ	25.0	6.9	46.0	6.7	3.2	14.4	0.01	0.01	0.24	1.0	1.0		
178/04/98 MWTZ 25.0 6.6 48 6.7 2.0 8.4 0.58 49.9 0.06 1.0 2.0 179/04/98 MWTZ 25.0 6.9 12.6 5.3 1.6 11.1 1.73 25.0 0.02 0.5 0.1 180/04/98 MWTZ 25.0 6.7 39.0 7.3 2.4 10.6 105.98 43.7 10.20 4.0 1.0 181/04/98 MWTZ 25.0 6.9 43.0 8.0 2.4 11.6 2.02 37.5 6.70 3.0 2.0 182/04/98 MWTZ 25.0 6.5 44.0 7.3 2.0 8.4 15.26 43.7 1.74 2.0 2.0 183/04/98 MWTZ 25.0 6.5 20.4 10.0 0.01 9.6 3.46 25.0 0.21 1.0 1.0 1.80 100.00 49.9 9.00 3.0 1.0 1.80 100.01 1.37 1.0 1.0 1.80/04/98 MWTZ 25.0 <td></td> <td>177/04/98 GOTZ</td> <td>25.0</td> <td>7.7</td> <td>24.6</td> <td>5.3</td> <td>1.6</td> <td>13.5</td> <td>0.86</td> <td>31.2</td> <td>0.01</td> <td>0.5</td> <td>1.0</td> <td></td> <td></td>		177/04/98 GOTZ	25.0	7.7	24.6	5.3	1.6	13.5	0.86	31.2	0.01	0.5	1.0		
179/04/98 MWTZ 25.0 6.9 12.6 5.3 1.6 11.1 1.73 25.0 0.02 0.5 0.1 180/04/98 MWTZ 25.0 6.7 39.0 7.3 2.4 10.6 105.98 43.7 10.20 4.0 1.0 181/04/98 MWTZ 25.0 6.9 43.0 8.0 2.4 11.6 2.02 37.5 6.70 3.0 2.0 11.6 2.02 37.5 6.70 3.0 2.0 3.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ĺ	178/04/98 MWTZ	25.0	6.6	48	6.7	2.0	8.4	0.58	49.9	0.06	1.0	2.0		
180/04/98 MWTZ 25.0 6.7 39.0 7.3 2.4 10.6 105.98 43.7 10.20 4.0 1.0 181/04/98 MWTZ 25.0 6.9 43.0 8.0 2.4 11.6 2.02 37.5 6.70 3.0 2.0 3.0 2.0 3.0 2.0 8.4 27.07 43.7 4.64 2.5 0.1 3.0 2.0 8.4 15.26 43.7 1.74 2.0 2.0 3.0 1.0	ĺ	179/04/98 MWTZ	25.0	6.9	12.6	5.3	1.6	11.1	1.73	25.0	0.02	0.5	0.1		
181/04/98 MWTZ 25.0 6.9 43.0 8.0 2.4 11.6 2.02 37.5 6.70 3.0 2.0 182/04/98 MWTZ 25.0 8.2 39.0 6.0 2.0 8.4 27.07 43.7 4.64 2.5 0.1 183/04/98 MWTZ 25.0 6.5 44.0 7.3 2.0 8.4 15.26 43.7 1.74 2.0 2.0 183/04/98 MWTZ 25.0 6.5 20.4 10.0 0.01 9.6 3.46 25.0 0.21 1.0 1.0 186/04/98 MWTZ 25.0 6.7 47.0 5.3 4.0 18.0 100.00 49.9 9.00 3.0 1.0 187/04/98 MWTZ 25.0 6.1 26.3 6.7 2.0 8.4 9.50 37.5 1.68 1.5 1.0 189/04/98 GOTZ 25.0 6.1 26.3 6.7 2.0 8.4 1.73 31.2 0.01 0.5 2.0 190/04/98 GOTZ 25.	ĺ	180/04/98 MWTZ	25.0	6.7	39.0	7.3	2.4	10.6	105.98	43.7	10.20	4.0	1.0		
182/04/98 MWTZ 25.0 8.2 39.0 6.0 2.0 8.4 27.07 43.7 4.64 2.5 0.1 183/04/98 MWTZ 25.0 6.5 44.0 7.3 2.0 8.4 15.26 43.7 1.74 2.0 2.0 4.64 2.5 0.1 43.7 1.46 2.5 6.7 1.0 1.0 <td>ĺ</td> <td>181/04/98 MWTZ</td> <td>25.0</td> <td>6.9</td> <td>43.0</td> <td>8.0</td> <td>2.4</td> <td>11.6</td> <td>2.02</td> <td>37.5</td> <td>6.70</td> <td>3.0</td> <td>2.0</td> <td></td> <td></td>	ĺ	181/04/98 MWTZ	25.0	6.9	43.0	8.0	2.4	11.6	2.02	37.5	6.70	3.0	2.0		
183/04/98 MWTZ 25.0 6.5 44.0 7.3 2.0 8.4 15.26 43.7 1.74 2.0 2.0 185/04/98 GOTZ 25.0 6.5 20.4 10.0 0.01 9.6 3.46 25.0 0.21 1.0 1.0 1.0 186/04/98 MWTZ 25.0 6.7 47.0 5.3 4.0 18.0 100.00 49.9 9.00 3.0 1.0 187/04/98 MWTZ 25.0 6.5 50.0 7.3 2.4 14.0 5.04 0.01 1.37 1.0 1.0 187/04/98 GOTZ 25.0 6.1 26.3 6.7 2.0 8.4 9.50 37.5 1.68 1.5 1.0 189/04/98 GOTZ 25.0 6.9 21.9 0.01 2.0 3.6 3.76 31.2 0.01 0.5 2.0 191/04/98 GOTZ 25.0 6.5 40.0 6.7 2.4 10.6 3.17 49.9 0.06 1.0 0.1	ĺ	182/04/98 MWTZ	25.0	8.2	39.0	6.0	2.0	8.4	27.07	43.7	4.64	2.5	0.1		
185/04/98 GOTZ 25.0 6.5 20.4 10.0 0.01 9.6 3.46 25.0 0.21 1.0 1.0	ĺ	183/04/98 MWTZ	25.0	6.5	44.0	7.3	2.0	8.4	15.26	43.7	1.74	2.0	2.0		
186/04/98 MWTZ 25.0 6.7 47.0 5.3 4.0 18.0 100.00 49.9 9.00 3.0 1.0 187/04/98 MWTZ 25.0 6.5 50.0 7.3 2.4 14.0 5.04 0.01 1.37 1.0 1.0 1.0 <td< td=""><td>ľ</td><td>185/04/98 GOTZ</td><td>25.0</td><td>6.5</td><td>20.4</td><td>10.0</td><td>0.01</td><td>9.6</td><td>3.46</td><td>25.0</td><td>0.21</td><td>1.0</td><td>1.0</td><td></td><td></td></td<>	ľ	185/04/98 GOTZ	25.0	6.5	20.4	10.0	0.01	9.6	3.46	25.0	0.21	1.0	1.0		
187/04/98 MWTZ 25.0 6.5 50.0 7.3 2.4 14.0 5.04 0.01 1.37 1.0 1.0 Image: constraints of the second s		186/04/98 MWTZ	25.0	6.7	47.0	5.3	4.0	18.0	100.00	49.9	9.00	3.0	1.0		
189/04/98 GOTZ 25.0 6.1 26.3 6.7 2.0 8.4 9.50 37.5 1.68 1.5 1.0 Image: constraints of the state		187/04/98 MWTZ	25.0	6.5	50.0	7.3	2.4	14.0	5.04	0.01	1.37	1.0	1.0		
190/04/98 GOTZ 25.0 6.9 21.9 0.01 2.0 3.6 3.76 31.2 0.01 0.5 2.0 1 1 191/04/98 GOTZ 25.0 7.3 23.4 4.7 2.0 8.4 1.73 31.2 0.08 0.5 0.1 1 1 192/04/98 MWTZ 25.0 6.5 40.0 6.7 2.4 10.6 3.17 49.9 0.06 1.0 0.1 1<		189/04/98 GOTZ	25.0	6.1	26.3	6.7	2.0	8.4	9.50	37.5	1.68	1.5	1.0		
191/04/98 GOTZ 25.0 7.3 23.4 4.7 2.0 8.4 1.73 31.2 0.08 0.5 0.1 1 1 192/04/98 MWTZ 25.0 6.5 40.0 6.7 2.4 10.6 3.17 49.9 0.06 1.0 0.1 1 1 193/04/98 MWTZ 25.0 6.3 40.0 4.7 4.0 9.6 0.24 49.9 0.05 1.0 1.0 1.0 1		190/04/98 GOTZ	25.0	6.9	21.9	0.01	2.0	3.6	3.76	31.2	0.01	0.5	2.0		
192/04/98 MWTZ 25.0 6.5 40.0 6.7 2.4 10.6 3.17 49.9 0.06 1.0 0.1 193/04/98 MWTZ 25.0 6.3 40.0 4.7 4.0 9.6 0.24 49.9 0.05 1.0 1.0 0.1 1.0 0.1 <		191/04/98 GOTZ	25.0	7.3	23.4	4.7	2.0	8.4	1.73	31.2	0.08	0.5	0.1		
193/04/98 MWTZ 25.0 6.3 40.0 4.7 4.0 9.6 0.24 49.9 0.05 1.0 1.0 194/04/98 MWTZ 25.0 6.7 41.0 6.7 4.0 9.6 23.54 43.7 0.14 1.0 0.1		192/04/98 MWTZ	25.0	6.5	40.0	6.7	2.4	10.6	3.17	49.9	0.06	1.0	0.1		
194/04/98 MWTZ 25.0 6.7 41.0 6.7 4.0 9.6 23.54 43.7 0.14 1.0 0.1 0.1 195/04/98 MWTZ 25.0 7.2 41.0 3.3 2.0 10.8 2.88 43.7 0.07 1.0 1.0 0.1 196/04/98 MWTZ 25.0 6.7 42.0 9.3 2.0 8.4 2.59 43.7 0.16 0.5 0.1 0.1 196/04/98 MWTZ 25.0 6.7 42.0 9.3 2.0 8.4 2.59 43.7 0.16 0.5 0.1 0.1 197/04/98 MWTZ 25.0 6.9 40.0 5.3 2.0 8.4 2.30 49.9 0.21 1.0 1.0 0.1		193/04/98 MWTZ	25.0	6.3	40.0	4.7	4.0	9.6	0.24	49.9	0.05	1.0	1.0		
195/04/98 MWTZ 25.0 7.2 41.0 3.3 2.0 10.8 2.88 43.7 0.07 1.0 1.0 1.0 196/04/98 MWTZ 25.0 6.7 42.0 9.3 2.0 8.4 2.59 43.7 0.16 0.5 0.1 197/04/98 MWTZ 25.0 6.9 40.0 5.3 2.0 8.4 2.30 49.9 0.21 1.0 1.0 1.0		194/04/98 MWTZ	25.0	6.7	41.0	6.7	4.0	9.6	23.54	43.7	0.14	1.0	0.1		
196/04/98 MWTZ 25.0 6.7 42.0 9.3 2.0 8.4 2.59 43.7 0.16 0.5 0.1 197/04/98 MWTZ 25.0 6.9 40.0 5.3 2.0 8.4 2.30 49.9 0.21 1.0 1.0		195/04/98 MWTZ	25.0	7.2	41.0	3.3	2.0	10.8	2.88	43.7	0.07	1.0	1.0		
197/04/98 MWTZ 25.0 6.9 40.0 5.3 2.0 8.4 2.30 49.9 0.21 1.0 1.0		196/04/98 MWTZ	25.0	6.7	42.0	9.3	2.0	8.4	2.59	43.7	0.16	0.5	0.1		
		197/04/98 MWTZ	25.0	6.9	40.0	5.3	2.0	8.4	2.30	49.9	0.21	1.0	1.0		

1990498 MWTZ 25.0 6.9 44.0 8.0 4.0 9.6 6.62 43.7 1.02 1.0 0.1 2000498 MWTZ 25.0 7.0 43.0 8.7 2.0 8.4 1.72 37.5 0.88 1.0 1.0 2010498 MWTZ 25.0 7.7 39.0 6.0 7.9 7.2 4.03 43.7 0.56 1.0 0.1 2010498 MWTZ 25.0 8.4 410.0 25.3 9.5 35.1 3.46 293.4 0.01 15.5 35.0 2040498 GWTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 2060498 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 2080498 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 1.15 31.2 0.01 0.5 1.0 2090498 GOTZ	198/04/98 MWTZ	25.0	7.2	43.0	7.3	2.0	8.4	8.35	49.9	0.80	1.0	0.1		
20004/98 MWTZ 25.0 7.0 43.0 8.7 2.0 8.4 1.72 37.5 0.88 1.0 1.0 201/04/98 MWTZ 25.0 7.7 39.0 6.0 7.9 7.2 4.03 43.7 0.56 1.0 0.1 203/04/98 MWTZ 25.0 8.4 410.0 25.3 9.5 35.1 3.46 293.4 0.01 15.5 35.0 204/04/98 MWTZ 25.0 8.8 570.0 30.7 9.9 49.3 4.03 418.3 0.01 25.0 30.0 205/04/98 GOTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 206/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 208/04/98 GOTZ 25.0 6.4 22.5 7.3 2.0 8.4 1.15 31.2 0.01 0.5 0.1 210	199/04/98 MWTZ	25.0	6.9	44.0	8.0	4.0	9.6	6.62	43.7	1.02	1.0	0.1		
201/04/98 MWTZ 25.0 7.7 39.0 6.0 7.9 7.2 4.03 43.7 0.56 1.0 0.1 203/04/98 MWTZ 25.0 8.4 410.0 25.3 9.5 35.1 3.46 293.4 0.01 15.5 35.0 204/04/98 MWTZ 25.0 8.8 570.0 30.7 9.9 49.3 4.03 418.3 0.01 25.0 30.0 205/04/98 GOTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 206/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 208/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 0.58 31.2 0.01 0.5 0.1 208/04/98 GOTZ 25.0 8.4 425.0 22.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0	200/04/98 MWTZ	25.0	7.0	43.0	8.7	2.0	8.4	1.72	37.5	0.88	1.0	1.0		
203/04/98 MWTZ 25.0 8.4 410.0 25.3 9.5 35.1 3.46 293.4 0.01 15.5 35.0 204/04/98 MWTZ 25.0 8.8 570.0 30.7 9.9 49.3 4.03 418.3 0.01 25.0 30.0 205/04/98 GOTZ 25.0 6.9 23.4 8.0 0.01 12.0 2.02 31.2 0.01 0.5 1.0 206/04/98 GOTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 207/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 208/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 1.15 31.2 0.01 0.5 0.1 209/04/98 GOTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01	201/04/98 MWTZ	25.0	7.7	39.0	6.0	7.9	7.2	4.03	43.7	0.56	1.0	0.1		
204/04/98 MWTZ 25.0 8.8 570.0 30.7 9.9 49.3 4.03 418.3 0.01 25.0 30.0 205/04/98 GOTZ 25.0 6.9 23.4 8.0 0.01 12.0 2.02 31.2 0.01 0.5 1.0 206/04/98 GOTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 206/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 207/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 1.15 31.2 0.01 0.5 0.1 209/04/98 GOTZ 25.0 6.4 425.0 22.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 212/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01	203/04/98 MWTZ	25.0	8.4	410.0	25.3	9.5	35.1	3.46	293.4	0.01	15.5	35.0		
205/04/98 GOTZ 25.0 6.9 23.4 8.0 0.01 12.0 2.02 31.2 0.01 0.5 1.0 206/04/98 GOTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 207/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 208/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 1.15 31.2 0.01 0.5 0.1 209/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 0.58 31.2 0.01 0.5 0.1 210/04/98 GOTZ 25.0 6.4 425.0 22.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 212/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 21	204/04/98 MWTZ	25.0	8.8	570.0	30.7	9.9	49.3	4.03	418.3	0.01	25.0	30.0		
206/04/98 GOTZ 25.0 6.4 21.0 1.3 2.0 6.0 0.29 37.5 0.01 0.5 1.0 1.0 207/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 1.0 208/04/98 GOTZ 25.0 8.1 21.9 6.7 2.0 8.4 1.15 31.2 0.03 0.5 1.0 209/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 0.58 31.2 0.01 0.5 0.1 210/04/98 GOTZ 25.0 6.4 425.0 22.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 212/04/98 MWTZ 25.0 7.1 38.0 6.7 2.4 20.2 28.51 43.7 3.62 1.5 0.01 213/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5	205/04/98 GOTZ	25.0	6.9	23.4	8.0	0.01	12.0	2.02	31.2	0.01	0.5	1.0		
207/04/98 GOTZ 25.0 6.5 21.8 9.3 2.4 8.2 1.73 37.4 0.04 0.5 1.0 1.0 208/04/98 GOTZ 25.0 8.1 21.9 6.7 2.0 8.4 1.15 31.2 0.03 0.5 1.0 1.0 209/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 0.58 31.2 0.01 0.5 0.1 209/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 212/04/98 MWTZ 25.0 7.1 38.0 6.7 2.4 20.2 28.51 43.7 3.62 1.5 0.01 1.5 213/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 214/04/98 MWTZ 25.0 6.8 42.5 6.7 2.0 8.4 43.78 49.9 5	206/04/98 GOTZ	25.0	6.4	21.0	1.3	2.0	6.0	0.29	37.5	0.01	0.5	1.0		
208/04/98 GOTZ 25.0 8.1 21.9 6.7 2.0 8.4 1.15 31.2 0.03 0.5 1.0 1.0 209/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 0.58 31.2 0.01 0.5 0.1 1.0 210/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 212/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0<	207/04/98 GOTZ	25.0	6.5	21.8	9.3	2.4	8.2	1.73	37.4	0.04	0.5	1.0		
209/04/98 GOTZ 25.0 6.6 22.5 7.3 2.0 8.4 0.58 31.2 0.01 0.5 0.1 210/04/98 GOTZ 25.0 8.4 425.0 22.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 212/04/98 MWTZ 25.0 7.1 38.0 6.7 2.4 20.2 28.51 43.7 3.62 1.5 0.01 213/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 1.5 214/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 8.4 43.78 49.9 5.68 2.0 0.01 1.5 215/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 216/04/98 MWTZ 25.0 6.4 15.9 6.0 0.01 7.2 0.58 31.2 0.01 0.01	208/04/98 GOTZ	25.0	8.1	21.9	6.7	2.0	8.4	1.15	31.2	0.03	0.5	1.0		
210/04/98 GOTZ 25.0 8.4 425.0 22.0 0.8 42.8 5.18 318.4 0.01 17.0 40.0 40.0 212/04/98 MWTZ 25.0 7.1 38.0 6.7 2.4 20.2 28.51 43.7 3.62 1.5 0.01 10.1 213/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 10.1 214/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 11.0 214/04/98 MWTZ 25.0 6.4 42.5 6.7 2.0 8.4 43.78 49.9 5.29 2.0 1.0 10.1 11.0	209/04/98 GOTZ	25.0	6.6	22.5	7.3	2.0	8.4	0.58	31.2	0.01	0.5	0.1		
212/04/98 MWTZ 25.0 7.1 38.0 6.7 2.4 20.2 28.51 43.7 3.62 1.5 0.01 213/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 214/04/98 MWTZ 25.0 6.9 40.0 6.7 4.0 7.2 54.43 49.9 5.68 2.0 0.01 215/04/98 MWTZ 25.0 6.8 42.5 6.7 2.0 8.4 43.78 49.9 5.29 2.0 1.0 216/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 217/04/98 MWTZ 25.0 6.4 15.9 6.0 0.01 7.2 0.58 31.2 0.01 1.0 0.1 218/04/98 MWTZ 25.0 6.8 22.5 4.7 2.4 10.6 1.72 31.2 0.01 0.01	210/04/98 GOTZ	25.0	8.4	425.0	22.0	0.8	42.8	5.18	318.4	0.01	17.0	40.0		
213/04/98 MWTZ 25.0 6.4 39.0 10.7 2.0 13.2 20.74 49.9 2.80 1.5 0.01 214/04/98 MWTZ 25.0 6.9 40.0 6.7 4.0 7.2 54.43 49.9 5.68 2.0 0.01 215/04/98 MWTZ 25.0 6.8 42.5 6.7 2.0 8.4 43.78 49.9 5.29 2.0 1.0 215/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 216/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 217/04/98 MWTZ 25.0 6.4 15.9 6.0 0.01 7.2 0.58 31.2 0.01 1.0 0.1 218/04/98 MWTZ 25.0 6.8 22.5 4.7 2.4 10.6 1.72 31.2 0.01 0.01 210/04/98 MWTZ 25.0	212/04/98 MWTZ	25.0	7.1	38.0	6.7	2.4	20.2	28.51	43.7	3.62	1.5	0.01		
214/04/98 MWTZ 25.0 6.9 40.0 6.7 4.0 7.2 54.43 49.9 5.68 2.0 0.01 1 215/04/98 MWTZ 25.0 6.8 42.5 6.7 2.0 8.4 43.78 49.9 5.29 2.0 1.0 1 216/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 1 216/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 1 217/04/98 MWTZ 25.0 6.4 15.9 6.0 0.01 7.2 0.58 31.2 0.01 1.0 0.1 218/04/98 MWTZ 25.0 7.6 4.4 6.7 0.01 9.6 0.58 25.0 0.04 0.01 0.01 1 219/04/98 MWTZ 25.0 6.8 22.5 4.7 2.4 10.6 1.72 31.2 0.01 0.5 0.01 220/04/98 MWTZ 25.0 6.9 24.0	213/04/98 MWTZ	25.0	6.4	39.0	10.7	2.0	13.2	20.74	49.9	2.80	1.5	0.01		
215/04/98 MWTZ 25.0 6.8 42.5 6.7 2.0 8.4 43.78 49.9 5.29 2.0 1.0 1.0 216/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 1.0 <td>214/04/98 MWTZ</td> <td>25.0</td> <td>6.9</td> <td>40.0</td> <td>6.7</td> <td>4.0</td> <td>7.2</td> <td>54.43</td> <td>49.9</td> <td>5.68</td> <td>2.0</td> <td>0.01</td> <td></td> <td></td>	214/04/98 MWTZ	25.0	6.9	40.0	6.7	4.0	7.2	54.43	49.9	5.68	2.0	0.01		
216/04/98 MWTZ 25.0 6.6 40.0 8.0 4.8 9.1 7.20 43.7 1.68 1.0 0.1 1.0<	215/04/98 MWTZ	25.0	6.8	42.5	6.7	2.0	8.4	43.78	49.9	5.29	2.0	1.0		
217/04/98 MWTZ 25.0 6.4 15.9 6.0 0.01 7.2 0.58 31.2 0.01 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.1 1.0 0.01 1.0 0.01 1.0 1	216/04/98 MWTZ	25.0	6.6	40.0	8.0	4.8	9.1	7.20	43.7	1.68	1.0	0.1		
218/04/98 MWTZ 25.0 7.6 4.4 6.7 0.01 9.6 0.58 25.0 0.04 0.01 0.01 0.01 219/04/98 MWTZ 25.0 6.8 22.5 4.7 2.4 10.6 1.72 31.2 0.01 0.5 0.01 0.01 220/04/98 MWTZ 25.0 6.9 22.5 8.0 2.0 6.0 5.44 31.2 0.05 1.0 0.01 0.01 221/04/98 GOTZ 25.0 6.9 24.0 6.0 2.0 6.0 0.20 31.2 0.17 0.5 1.0 0.01 222/04/98 GOTZ 25.0 6.4 13.7 8.7 0.01 7.2 0.01 43.7 0.01 0.5 0.01 0.5 223/04/98 GOTZ 25.0 7.1 4.4 8.0 0.01 4.8 0.29 31.2 0.01 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 0.01 1.0 0.01 <	217/04/98 MWTZ	25.0	6.4	15.9	6.0	0.01	7.2	0.58	31.2	0.01	1.0	0.1		
219/04/98 MWTZ 25.0 6.8 22.5 4.7 2.4 10.6 1.72 31.2 0.01 0.5 0.01 1.0 220/04/98 MWTZ 25.0 6.9 22.5 8.0 2.0 6.0 5.44 31.2 0.05 1.0 0.01 1.0 221/04/98 GOTZ 25.0 6.9 24.0 6.0 2.0 6.0 0.20 31.2 0.17 0.5 1.0 1.0 222/04/98 GOTZ 25.0 6.4 13.7 8.7 0.01 7.2 0.01 43.7 0.01 0.5 0.01 1.0 1.0 223/04/98 GOTZ 25.0 7.1 4.4 8.0 0.01 4.8 0.29 31.2 0.01 0.01 1.0 1.0	218/04/98 MWTZ	25.0	7.6	4.4	6.7	0.01	9.6	0.58	25.0	0.04	0.01	0.01		
220/04/98 MWTZ 25.0 6.9 22.5 8.0 2.0 6.0 5.44 31.2 0.05 1.0 0.01 221/04/98 GOTZ 25.0 6.9 24.0 6.0 2.0 6.0 0.20 31.2 0.17 0.5 1.0 0.01 222/04/98 GOTZ 25.0 6.4 13.7 8.7 0.01 7.2 0.01 43.7 0.01 0.5 0.01 223/04/98 GOTZ 25.0 7.1 4.4 8.0 0.01 4.8 0.29 31.2 0.01 0.01 1.0 0.01	219/04/98 MWTZ	25.0	6.8	22.5	4.7	2.4	10.6	1.72	31.2	0.01	0.5	0.01		
221/04/98 GOTZ 25.0 6.9 24.0 6.0 2.0 6.0 0.20 31.2 0.17 0.5 1.0 222/04/98 GOTZ 25.0 6.4 13.7 8.7 0.01 7.2 0.01 43.7 0.01 0.5 0.01 223/04/98 GOTZ 25.0 7.1 4.4 8.0 0.01 4.8 0.29 31.2 0.01 0.01 1.0	220/04/98 MWTZ	25.0	6.9	22.5	8.0	2.0	6.0	5.44	31.2	0.05	1.0	0.01		
222/04/98 GOTZ 25.0 6.4 13.7 8.7 0.01 7.2 0.01 43.7 0.01 0.5 0.01 223/04/98 GOTZ 25.0 7.1 4.4 8.0 0.01 4.8 0.29 31.2 0.01 0.01 1.0	221/04/98 GOTZ	25.0	6.9	24.0	6.0	2.0	6.0	0.20	31.2	0.17	0.5	1.0		
223/04/98 GOTZ 25.0 7.1 4.4 8.0 0.01 4.8 0.29 31.2 0.01 0.01 1.0	222/04/98 GOTZ	25.0	6.4	13.7	8.7	0.01	7.2	0.01	43.7	0.01	0.5	0.01		
	223/04/98 GOTZ	25.0	7.1	4.4	8.0	0.01	4.8	0.29	31.2	0.01	0.01	1.0		

224/04/98 GOTZ	25.0	6.5	12.6	4.7	0.01	4.8	0.01	18.7	0.01	0.5	0.01		
225/04/98 GOTZ	25.0	6.5	15.3	8.0	0.01	7.2	0.58	25.0	0.01	0.5	0.01		
226/04/98 GOTZ	25.0	6.8	16.2	5.3	1.6	8.7	2.02	25.0	0.03	0.5	0.01		
227/04/98 GOTZ	25.0	6.6	26.4	6.0	1.6	8.7	4.32	43.7	0.01	1.0	2.0		
228/04/98 GOTZ	25.0	7.6	4.8	8.0	0.01	7.2	0.01	25.0	0.01	0.01	0.01		
229/04/98 GOTZ	25.0	7.7	4.5	5.3	0.01	9.6	2.59	18.7	0.01	0.01	0.01		
230/04/98 GOTZ	25.0	6.9	6.1	6.0	0.01	7.2	0.43	31.2	0.01	0.01	0.01		
231/04/98 GOTZ	25.0	6.9	21.9	6.7	1.6	11.1	0.58	37.5	0.03	0.5	1.0		
232/04/98 GOTZ	25.0	8.0	22.2	6.0	ND	9.6	0.32	37.5	0.01	0.5	ND		
233/04/98 GOTZ	25.0	7.2	22.2	6.0	2.0	8.4	0.58	31.2	0.01	0.5	1.0		
235/04/98 GOTZ	25.0	6.5	2.2	5.3	2.0	8.4	2.59	31.2	0.01	0.5	ND		
236/04/98 GOTZ	25.0	7.6	213.0	6.0	19.1	31.8	2.59	199.8	0.04	0.5	1.0		
237/04/98GOTZ	25.0	6.7	18.9	5.3	0.8	11.6	0.14	31.2	0.01	1.0	1.0		
238/04/98 MWTZ	25.0	6.5	39	6.0	3.2	14.0	2.02	43.7	0.07	0.5	1.0		
239/04/98 MWTZ	25.0	6.8	41.0	6.7	2.0	10.8	1.44	43.7	0.09	0.5	2.0		
240/04/98 KGTZ	25.0	6.5	14.7	4.7	0.01	7.2	1.15	31.2	0.05	0.5	1.0		
241/04/98 KGTZ	25.0	7.1	145.5	7.3	15.1	14.9	4.03	49.9	0.56	1.0	6.0		
242/04/98 KGTZ	25.0	6.4	234.0	33.3	19.8	16.8	7.20	87.4	0.01	4.0	15.0		
243/04/98 KGTZ	25.0	7.4	75.0	15.3	4.0	7.2	3.17	56.4	0.31	0.5	10.0		
244/04/98 KGTZ	25.0	7.4	810.0	36.0	50.0	75.6	95.32	220.0	0.01	2.0	20.0		
245/04/98 KGTZ	25.0	6.5	26.7	9.3	0.01	14.4	0.58	25.0	0.05	1.0	1.0		
246/04/98 KGTZ	25.0	6.8	24.0	6.7	0.01	7.2	0.72	25.0	0.04	0.5	3.0		
247/04/98 KGTZ	25.0	7.9	320.0	0.01	25.8	25.3	0.58	268.4	0.01	0.5	24.0		
248/04/98 KGTZ	25.0	6.9	29.7	7.3	0.8	0.01	8.93	31.2	0.72	0.5	4.0		
				•	•				•			•	•

249/04/98 KG1"Z	25.0	7.8	67.5	9.3	7.1	12.5	1.73	49.9	0.08	0.5	4.0		
250R/04/98 KGMTZ	25.0	6.6	87.0	10.0	4.0	14.4	4.04	74.9	0.63	0.5	3.0		
250L/04/98 KGMTZ	25.0	7.0	86.0	8.0	7.9	9.6	3.44	68.7	0.57	0.5	2.0		
250M/04/98 KGMTZ	25.0	6.5	85.0	10.0	6.0	10.8	3.74	68.7	0.53	0.5	5.0		
251/04/98 KGTZ	25.0	6.9	87.0	12.0	6.0	0.01	3.46	74.9	0.59	1.0	4.0		
252/04/98 KGTZ	25.0	8.5	580.0	29.3	11.9	45.7	35.18	418.3	0.01	23.0	30.0		
253/04/98 MWTZ	25.0	6.8	14.7	10.0	0.8	6.0	0.01	25.0	0.01	0.5	1.0		
254/04/98 MWTZ	25.0	7.1	37.0	9.3	4.8	9.6	3.84	43.7	0.01	0.5	0.01		
255/04/98 MWTZ	25.0	7.1	41.0	7.3	4.0	6.0	0.01	43.7	0.01	0.5	0.01		
256/04/98 GOTZ	25.0	6.4	7.5	8.7	2.0	6.0	0.01	25.0	0.01	0.01	0.01		
257/04/98 GOTZ	25.0	6.8	13.5	8.0	2.0	4.8	1.28	25.0	0.01	0.5	1.0		
258/04/98 GOTZ	25.0	6.6	23.1	6.7	0.8	9.1	1.44	31.2	0.03	0.5	1.0		
262/05/98 GOTZ	25.0	6.6	12.6	6.7	1.6	6.3	0.01	31.2	0.01	0.5	0.01		
266/05/98 GOTZ	25.0	6.9	27.6	8.0	2.0	4.8	2.88	31.2	0.24	1.5	0.01		
267/05/98 GOTZ	25.0	6.8	10.8	1.7	0.01	4.8	0.01	18.7	0.01	0.5	0.01		
269/05/98 MWTZ	25.0	6.7	42.0	6.7	4.0	7.2	0.32	37.5	0.24	1.5	1.0		
270/05/98 MWTZ	25.0	7.2	38.0	13.3	2.0	8.4	0.01	37.5	0.04	1.0	0.01		
271/05/98 MWTZ	25.0	6.4	5.7	8.0	0.01	0.01	0.01	0.01	0.01	0.01	1.0		
272/05/98 MWTZ	25.0	7.2	58.0	6.0	2.0	12.0	5.28	43.7	1.13	2.0	0.01		
273/05/98 MWTZ	25.0	6.8	42.0	6.7	2.0	8.4	0.01	37.5	0.06	1.0	0.01		
275/05/98 GOTZ	25.0	6.5	5.3	0.01	0.01	8.4	0.01	25.0	0.01	0.01	1.0		
276/05/98 GOTZ	25.0	6.8	24.6	0.01	0.01	9.6	0.96	31.2	0.15	1.0	1.0		
277/05/98 GOTZ	25.0	6.5	26.1	6.7	0.8	6.7	0.80	25.0	0.16	0.5	1.0		
278/05/98 MWTZ	25.0	6.8	8.3	8.0	4.8	3.1	1.12	18.7	0.01	0.01	1.0		

280/05/98 MWTZ 25.0 6.9 56.0 5.8 7.1 6.5 4.32 49.9 0.90 1.0 0.01 281/05/98 GOTZ 25.0 6.6 5.5 20.0 4.0 3.6 0.16 12.5 0.01 3.0 0.01 282/05/98 GOTZ 25.0 7.0 27.9 6.0 3.2 8.9 2.56 31.2 0.43 1.0 0.01 283/05/98 GOTZ 25.0 8.6 30.0 7.3 2.0 7.2 0.01 31.2 0.31 0.5 2.0 285/05/98 MWTZ 25.0 6.8 26.7 0.01 4.0 7.2 2.08 43.7 0.01 0.5 0.01 286/07/98 MWTZ 25.0 6.7 18.6 6.7 0.01 6.0 0.32 31.2 0.01 1.5 2.0 287/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/	279/05/98 MWTZ	25.0	6.7	58.0	3.1	5.6	9.9	1.92	43.7	1.72	1.0	1.0		
281/05/98 GOTZ 25.0 6.6 5.5 20.0 4.0 3.6 0.16 12.5 0.01 3.0 0.01 282/05/98 GOTZ 25.0 7.0 27.9 6.0 3.2 8.9 2.56 31.2 0.43 1.0 0.01 283/05/98 GOTZ 25.0 8.6 30.0 7.3 2.0 7.2 0.01 31.2 0.43 1.0 0.01 283/05/98 GOTZ 25.0 8.6 30.0 7.3 2.0 7.2 0.01 31.2 0.43 1.0 0.01 285/05/98 MWTZ 25.0 6.8 26.7 0.01 4.0 7.2 2.08 43.7 0.01 0.5 0.01 286/07/98 MWTZ 25.0 6.7 18.6 6.7 0.01 6.0 1.28 18.7 0.01 0.5 0.01 287/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/0	280/05/98 MWTZ	25.0	6.9	56.0	5.8	7.1	6.5	4.32	49.9	0.90	1.0	0.01		
282/05/98 GOTZ 25.0 7.0 27.9 6.0 3.2 8.9 2.56 31.2 0.43 1.0 0.01 283/05/98 GOTZ 25.0 8.6 30.0 7.3 2.0 7.2 0.01 31.2 0.31 0.5 2.0 283/05/98 GOTZ 25.0 8.6 30.0 7.3 2.0 7.2 0.01 31.2 0.31 0.5 2.0 285/05/98 MWTZ 25.0 6.8 26.7 0.01 4.0 7.2 2.08 43.7 0.01 0.5 0.01 286/07/98 MWTZ 25.0 6.7 18.6 6.7 0.01 6.0 0.32 31.2 0.01 1.5 2.0 287/07/98 MWTZ 25.0 6.8 9.0 7.3 0.01 6.0 1.28 18.7 0.01 0.5 0.01 288/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01 0.01 2.0 290/07/9	281/05/98 GOTZ	25.0	6.6	5.5	20.0	4.0	3.6	0.16	12.5	0.01	3.0	0.01		
283/05/98 GOTZ 25.0 8.6 30.0 7.3 2.0 7.2 0.01 31.2 0.31 0.5 2.0 285/05/98 MWTZ 25.0 6.8 26.7 0.01 4.0 7.2 2.08 43.7 0.01 0.5 0.01 286/07/98 MWTZ 25.0 6.7 18.6 6.7 0.01 6.0 0.32 31.2 0.01 1.5 2.0 287/07/98 MWTZ 25.0 6.8 9.0 7.3 0.01 6.0 1.28 18.7 0.01 0.5 0.01 288/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01 0.01 25 0.01 289/07/98 GOTZ 25.0 6.8 7.4 7.3 0.8 6.7 0.01 25.0 0.01 0.01 25.0 1.0 </td <td>282/05/98 GOTZ</td> <td>25.0</td> <td>7.0</td> <td>27.9</td> <td>6.0</td> <td>3.2</td> <td>8.9</td> <td>2.56</td> <td>31.2</td> <td>0.43</td> <td>1.0</td> <td>0.01</td> <td></td> <td></td>	282/05/98 GOTZ	25.0	7.0	27.9	6.0	3.2	8.9	2.56	31.2	0.43	1.0	0.01		
285/05/98 MWTZ 25.0 6.8 26.7 0.01 4.0 7.2 2.08 43.7 0.01 0.5 0.01 286/07/98 MWTZ 25.0 6.7 18.6 6.7 0.01 6.0 0.32 31.2 0.01 1.5 2.0 287/07/98 MWTZ 25.0 6.8 9.0 7.3 0.01 6.0 1.28 18.7 0.01 0.5 0.01 288/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 288/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01 0.01 0.01 0.01 290/07/98 GOTZ 25.0 6.8 7.4 7.3 0.8 6.7 0.01 25.0 0.01 1.0 1.0 1.0<	283/05/98 GOTZ	25.0	8.6	30.0	7.3	2.0	7.2	0.01	31.2	0.31	0.5	2.0		
286/07/98 MWTZ 25.0 6.7 18.6 6.7 0.01 6.0 0.32 31.2 0.01 1.5 2.0 1 287/07/98 MWTZ 25.0 6.8 9.0 7.3 0.01 6.0 1.28 18.7 0.01 0.5 0.01 288/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01 0.01 0.01 290/07/98 GOTZ 25.0 6.8 7.4 7.3 0.8 6.7 0.01 25.0 0.01 0.01 0.01 0.01 291/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 0.01 18.7 0.01 0.01 1.0 292/07/98 GOTZ 25.0 6.9 7.2 5.3 0.01 6	285/05/98 MWTZ	25.0	6.8	26.7	0.01	4.0	7.2	2.08	43.7	0.01	0.5	0.01		
287/07/98 MWTZ 25.0 6.8 9.0 7.3 0.01 6.0 1.28 18.7 0.01 0.5 0.01 288/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01 0.01 0.01 0.01 290/07/98 GOTZ 25.0 6.8 7.4 7.3 0.8 6.7 0.01 25.0 0.01 0.01 0.01 0.01 290/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 0.01 18.7 0.01 0.5 1.0 291/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 0.01 18.7 0.01 0.01 1.0 292/07/98 GOTZ 25.0 6.9 7.2 5.3 0.01 6.0 1.60 25.0 0.01 0.01 1.0 293/07/98 GOTZ 25.0 6.8 25.8 8.0 2.0 <t< td=""><td>286/07/98 MWTZ</td><td>25.0</td><td>6.7</td><td>18.6</td><td>6.7</td><td>0.01</td><td>6.0</td><td>0.32</td><td>31.2</td><td>0.01</td><td>1.5</td><td>2.0</td><td></td><td></td></t<>	286/07/98 MWTZ	25.0	6.7	18.6	6.7	0.01	6.0	0.32	31.2	0.01	1.5	2.0		
288/07/98 MWTZ 25.0 6.9 24.6 6.7 4.0 4.8 0.01 18.7 0.01 0.5 0.01 289/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01 0.01 0.01 0.01 290/07/98 GOTZ 25.0 6.8 7.4 7.3 0.8 6.7 0.01 25.0 0.01 0.01 0.01 291/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 0.01 18.7 0.01 0.01 0.01 1.0 292/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 1.60 25.0 0.01 1.0 292/07/98 GOTZ 25.0 6.9 7.2 5.3 0.01 6.0 1.60 25.0 0.01 0.01 0.01 293/07/98 GOTZ 25.0 6.8 25.8 8.0 2.0 7.2 0.64 25.0 0.01 0.5 0.01	287/07/98 MWTZ	25.0	6.8	9.0	7.3	0.01	6.0	1.28	18.7	0.01	0.5	0.01		
289/07/98 MWTZ 25.0 6.9 9.0 3.7 0.01 7.2 0.16 25.0 0.01	288/07/98 MWTZ	25.0	6.9	24.6	6.7	4.0	4.8	0.01	18.7	0.01	0.5	0.01		
290/07/98 GOTZ 25.0 6.8 7.4 7.3 0.8 6.7 0.01 25.0 0.01 0.5 1.0 291/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 0.01 18.7 0.01 0.01 1.0 292/07/98 GOTZ 25.0 6.9 7.2 5.3 0.01 6.0 1.60 25.0 0.01 0.01 0.01 293/07/98 GOTZ 25.0 6.8 25.8 8.0 2.0 7.2 0.64 25.0 0.01 0.01 0.01	289/07/98 MWTZ	25.0	6.9	9.0	3.7	0.01	7.2	0.16	25.0	0.01	0.01	0.01		
291/07/98 GOTZ 25.0 6.4 11.4 8.0 0.01 6.0 0.01 18.7 0.01 0.01 1.0 292/07/98 GOTZ 25.0 6.9 7.2 5.3 0.01 6.0 1.60 25.0 0.01 0.01 0.01 0.01 293/07/98 GOTZ 25.0 6.8 25.8 8.0 2.0 7.2 0.64 25.0 0.01 0.01 0.01	290/07/98 GOTZ	25.0	6.8	7.4	7.3	0.8	6.7	0.01	25.0	0.01	0.5	1.0		
292/07/98 GOTZ 25.0 6.9 7.2 5.3 0.01 6.0 1.60 25.0 0.01 0.01 293/07/98 GOTZ 25.0 6.8 25.8 8.0 2.0 7.2 0.64 25.0 0.01 0.01 0.01	291/07/98 GOTZ	25.0	6.4	11.4	8.0	0.01	6.0	0.01	18.7	0.01	0.01	1.0		
293/07/98 GOTZ 250 68 258 80 20 72 064 250 001 05 001	292/07/98 GOTZ	25.0	6.9	7.2	5.3	0.01	6.0	1.60	25.0	0.01	0.01	0.01		
	293/07/98 GOTZ	25.0	6.8	25.8	8.0	2.0	7.2	0.64	25.0	0.01	0.5	0.01		
294/07/98 MWTZ 25.0 6.9 13.2 7.3 0.01 6.0 1.92 25.0 0.01 0.01 3.0	294/07/98 MWTZ	25.0	6.9	13.2	7.3	0.01	6.0	1.92	25.0	0.01	0.01	3.0		
295/07/98 MWTZ 25.0 6.7 38.0 0.01 4.0 8.4 3.84 37.5 0.01 0.5 0.01	295/07/98 MWTZ	25.0	6.7	38.0	0.01	4.0	8.4	3.84	37.5	0.01	0.5	0.01		
296/07/98 KGTZ 25.0 7.2 117.0 10.0 13.9 7.2 0.01 93.6 0.01 1.5 5.0	296/07/98 KGTZ	25.0	7.2	117.0	10.0	13.9	7.2	0.01	93.6	0.01	1.5	5.0		
297/07/98 MWTZ 25.0 7.2 0.01 133200 0.01 0.01 4384.0 99.9 0.01 2400 60000	297/07/98 MWTZ	25.0	7.2	0.01	133200	0.01	0.01	4384.0	99.9	0.01	2400	60000		
298/07/98 KGTZ 25.0 7.0 0.01 0.01 0.01 0.01 0.01 0.01 0.0	298/07/98 KGTZ	25.0	7.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
299/07/98 UVZ-GTZ 25.0 7.1 60*10 ⁴ 12472.0 1825.3 1972.9 4144.0 118.6 0.01 3100 37500	.99/07/98 UVZ-GTZ	25.0	7.1	$60*10^4$	12472.0	1825.3	1972.9	4144.0	118.6	0.01	3100	37500		
300/08/98 UVZ-GTZ 25.0 6.8 54*10 ⁴ 12472.0 1904.6 1876.7 3840.0 118.6 0.01 3250 40000	00/08/98 UVZ-GTZ	25.0	6.8	54*10 ⁴	12472.0	1904.6	1876.7	3840.0	118.6	0.01	3250	40000		
301/08/98 UVZ-GTZ 25.0 7.1 54*10 ⁴ 13166.8 2301.4 1780.4 3856.0 106.1 0.01 3250 40000	01/08/98 UVZ-GTZ	25.0	7.1	54*10 ⁴	13166.8	2301.4	1780.4	3856.0	106.1	0.01	3250	40000		
302/08/98 UVZ-GTZ 25.0 7.8 186.0 3.1 14.3 19.3 0.01 137.3 0.04 2.0 17.0	02/08/98 UVZ-GTZ	25.0	7.8	186.0	3.1	14.3	19.3	0.01	137.3	0.04	2.0	17.0		
303/08/98 GOTZ 25.0 7.5 52.0 1.4 27.8 28.4 0.01 43.7 0.01 0.5 3.0	303/08/98 GOTZ	25.0	7.5	52.0	1.4	27.8	28.4	0.01	43.7	0.01	0.5	3.0		

305/08/98 MWTZ	25.0	8.5	630.0	4.9	11.1	53.9	4.16	511.9	0.01	30.5	30.0		
314/08/98 MWTZ	25.0	8.5	670.0	6.6	13.5	52.5	5.76	505.7	0.01	31.0	45.0		
315/08/98 MWTZ	25.0	8.8	580.0	6.6	11.9	57.3	0.01	501.9	0.01	30.5	30.0		
316/08/98 MWTZ	25.0	8.5	620.0	3.1	14.3	50.5	0.01	505.7	0.01	30.0	30.0		
317/08/98 MWTZ	25.0	8.8	590.0	6.6	11.1	52.0	0.01	511.9	0.01	30.0	35.0		
318/08/98 MWTZ	25.0	8.7	630.0	3.1	11.9	52.0	0.01	524.4	0.01	30.5	30.0		
319/08/98 MWTZ	25.0	8.7	630.0	6.6	11.9	52.9	0.01	536.9	0.02	30.5	35.0		
320/08/98 GOTZ	25.0	8.4	580.0	3.1	11.1	52.5	5.76	511.9	0.01	30.0	30.0		
321/08/98 MWTZ	25.0	8.8	580.0	3.1	11.9	51.0	0.48	511.9	0.01	30.0	35.0		
322/08/98 MWTZ	25.0	8.7	590.0	4.9	14.3	48.6	0.01	115.9	0.02	30.0	35.0		
323/08/98 MWTZ	25.0	8.7	610.0	3.1	11.9	55.8	0.01	518.2	0.01	31.0	30.0		
324/08/98 MWTZ	25.0	8.3	610.0	3.1	11.9	51.0	0.01	524.4	0.01	31.0	35.0		
325/08/98 MWTZ	25.0	8.3	600.0	3.1	12.7	57.3	0.16	511.9	0.01	30.5	35.0		
326/08/98 GOTZ	25.0	8.8	600.0	6.6	11.9	26.5	0.01	511.9	0.01	30.0	30.0		
327/08/98 GOTZ	25.0	8.8	640.0	4.9	11.1	52.9	0.01	505.7	0.01	30.5	30.0		
328/08/98 GOTZ	25.0	8.8	640.0	3.1	9.5	54.4	0.01	511.9	0.01	30.0	35.0		
329/08/98 GOTZ	25.0	8.8	610.0	4.9	24.6	49.6	0.01	524.4	0.01	31.0	35.0		
330/08/98 GOTZ	25.0	8.5	630.0	6.6	12.7	54.4	3.04	524.4	0.01	30.5	35.0		
331/08/98 GOTZ	25.0	8.5	670.0	3.1	11.9	56.3	0.80	530.7	0.01	34.0	35.0		
332/08/98 GOTZ	25.0	8.4	630.0	4.9	13.5	51.0	0.01	518.2	0.01	30.5	30.0		
357/10/98 MWTZ	25.0	7.9	78.0	13.6	3.2	14.0	0.01	49.9	0.01	1.0	1.0		
358/10/98 GOTZ	25.0	7.8	54.0	1.4	3.2	16.8	2.56	56.2	0.02	1.5	0.01		
359/10/98 GOTZ	25.0	8.0	54.0	1.4	3.2	15.9	0.01	56.2	0.03	1.0	0.01		
362/10/98 GOTZ	25.0	7.9	35.0	0.01	3.2	14.4	0.01	37.5	0.01	0.5	1.0		

366/10/98 GOTZ 25.0 7.9 58.0 3.1 1.6 12.0 0.01 18.7 0.06 1.5 1.0 1 370R_/11/98 MWTZ 25.0 6.0 14.7 5.21 1.6 11.1 1.44 37.5 0.01 0.01 0.01 0.01 371R_/11/98 MWTZ 25.0 6.4 7.6 5.21 ND 10.6 7.49 31.2 0.01 0.5 0.01 1 373 376R_/11/98 MWTZ 25.0 6.1 15.6 7.3 ND 12.5 0.29 37.5 0.01 1.0 0.01 1 3.01 1.0 0.01 1.0 0.01 1 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 0.01 1.0 1.0 1.0 1.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.														
370R ₁ /11/98 MWTZ 25.0 6.0 14.7 5.21 1.6 11.1 1.44 37.5 0.01 0.01 0.01 0.01 371R ₂ /11/98 MWTZ 25.0 5.9 19.5 5.2 1.6 11.1 0.58 74.9 0.01 0.5 0.01 0.01 372R ₃ /11/98 MWTZ 25.0 6.4 7.6 5.21 ND 10.6 7.49 31.2 0.01 0.5 0.01 </td <td>366/10/98 GOTZ</td> <td>25.0</td> <td>7.9</td> <td>58.0</td> <td>3.1</td> <td>1.6</td> <td>12.0</td> <td>0.01</td> <td>18.7</td> <td>0.06</td> <td>1.5</td> <td>1.0</td> <td></td> <td></td>	366/10/98 GOTZ	25.0	7.9	58.0	3.1	1.6	12.0	0.01	18.7	0.06	1.5	1.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	370R ₁ /11/98 MWTZ	25.0	6.0	14.7	5.21	1.6	11.1	1.44	37.5	0.01	0.01	0.01		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	371R ₂ /11/98 MWTZ	25.0	5.9	19.5	5.2	1.6	11.1	0.58	74.9	0.01	0.5	0.01		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	372R ₃ /11/98 MWTZ	25.0	6.4	7.6	5.21	ND	10.6	7.49	31.2	0.01	0.5	0.01		
377R ₉ /11/98 MWTZ 25.0 6.3 10.5 5.2 ND 11.1 0.86 34.3 0.01 1.0 0.01 10 410R ₉ /12/98 MWTZ 25.0 6.2 6.5 7.3 ND 10.6 0.86 37.5 0.10 0.01 0.01 0.01 408R ₉ /12/98 MWTZ 25.0 6.5 6.9 7.3 ND 8.7 0.86 28.1 0.01 0.01 0.01 0.01 407R ₄ /12/98 MWTZ 25.0 6.5 5.0 8.7 ND 10.6 2.02 31.2 0.01 0.01 0.01 0.01 409R ₉ /12/98 MWTZ 25.0 6.1 7.3 5.9 ND 10.6 0.29 46.8 0.1 0.01 0.01 0.01 420R ₁ /01/99 MWTZ 25.0 6.1 7.3 5.9 ND 11.1 0.01 28.1 0.01 0.01 0.01 0.01 0.01 0.01 1.0 11/3/98 25.0 8.0 186.0 6.7 39.7 120.3 0.01 62.4 0.17 3.5 0.01 15/3/3/98	376R ₄ /11/98 MWTZ	25.0	6.1	15.6	7.3	ND	12.5	0.29	37.5	0.01	1.0	0.01		
410R ₂ /12/98 MWTZ 25.0 6.2 6.5 7.3 ND 10.6 0.86 37.5 0.10 0.01 0.01 0.01 408R ₃ /12/98 MWTZ 25.0 6.5 6.9 7.3 ND 8.7 0.86 28.1 0.01 0.01 0.01 0.01 407R ₄ /12/98 MWTZ 25.0 6.5 5.0 8.7 ND 10.6 2.02 31.2 0.01 0.01 0.01 0.01 409R ₅ /12/98 MWTZ 25.0 6.3 15.6 5.9 ND 10.6 0.29 46.8 0.1 0.01 0.01 0.01 409R ₅ /12/98 MWTZ 25.0 6.1 7.3 5.9 ND 11.1 0.01 28.1 0.01 0.01 0.01 0.01 420R ₁ /01/99 MWTZ 25.0 6.1 7.3 5.9 ND 11.1 0.01 28.1 0.01 0.01 0.01 0.01 0.01 0.01 1.0 145/03/980 0.01 0.5 1.0 1.0 145/03/980 1.0 1.0 151/03/98 1.0 1.0 1.0 <td< td=""><td>377R₅/11/98 MWTZ</td><td>25.0</td><td>6.3</td><td>10.5</td><td>5.2</td><td>ND</td><td>11.1</td><td>0.86</td><td>34.3</td><td>0.01</td><td>1.0</td><td>0.01</td><td></td><td></td></td<>	377R ₅ /11/98 MWTZ	25.0	6.3	10.5	5.2	ND	11.1	0.86	34.3	0.01	1.0	0.01		
408R ₃ /12/98 MWTZ 25.0 6.5 6.9 7.3 ND 8.7 0.86 28.1 0.01 0.01 0.01 0.01 407R ₄ /12/98 MWTZ 25.0 6.5 5.0 8.7 ND 10.6 2.02 31.2 0.01 0.01 0.01 0.01 409R ₅ /12/98 MWTZ 25.0 6.3 15.6 5.9 ND 10.6 0.29 46.8 0.1 0.01 0.01 0.01 409R ₅ /12/98 MWTZ 25.0 6.1 7.3 5.9 ND 10.6 0.29 46.8 0.1 0.01 0.01 0.01 420R ₁ /01/99 MWTZ 25.0 6.1 7.3 5.9 ND 11.1 0.01 28.1 0.01 0.01 0.01 0.01 1/3/98 25.0 8.0 186.0 6.7 39.7 96.2 0.01 187.2 0.01 0.5 1.0 1.0 145/02/98/MWTZ 25.0 7.0 0.01 6.7 39.7 120.3 0.01 62.4 3.72 3.5 1.0 1.0 151/03/98/GOTZ 25.0 6.	410R ₂ /12/98 MWTZ	25.0	6.2	6.5	7.3	ND	10.6	0.86	37.5	0.10	0.10	0.01		
407R ₄ /12/98 MWTZ 25.0 6.5 5.0 8.7 ND 10.6 2.02 31.2 0.01 0.01 0.10 409R ₅ /12/98 MWTZ 25.0 6.3 15.6 5.9 ND 10.6 0.29 46.8 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 46.8 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 6.7 39.7 120.3 0.01 62.4 0.17 3.5 1.0 5.5 0	408R ₃ /12/98 MWTZ	25.0	6.5	6.9	7.3	ND	8.7	0.86	28.1	0.01	0.01	0.01		
409R ₅ /12/98 MWTZ 25.0 6.3 15.6 5.9 ND 10.6 0.29 46.8 0.1 0.01 0.01 0.01 420R ₁ /01/99 MWTZ 25.0 6.1 7.3 5.9 ND 11.1 0.01 28.1 0.01 0.01 0.01 0.01 1/3/98 25.0 8.0 186.0 6.7 39.7 96.2 0.01 187.2 0.01 0.5 1.0 0.01 145/02/98MWTZ 25.0 7.0. 0.01 6.7 39.7 120.3 0.01 62.4 0.17 3.5 0.01 0.1 151/03/98MWTZ 25.0 6.9 67.0 6.7 39.7 120.3 0.01 62.4 3.72 3.5 1.0 0.01 151/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 0.1 0.1 153/03/98GOTZ 25.0 7.1 21.9 6.7 39.7 168.4 0.01 24.97 0.01 15.0 24.0 155/03/98/97 25.0 8.9 600.0 <td>407R₄/12/98 MWTZ</td> <td>25.0</td> <td>6.5</td> <td>5.0</td> <td>8.7</td> <td>ND</td> <td>10.6</td> <td>2.02</td> <td>31.2</td> <td>0.01</td> <td>0.01</td> <td>0.10</td> <td></td> <td></td>	407R ₄ /12/98 MWTZ	25.0	6.5	5.0	8.7	ND	10.6	2.02	31.2	0.01	0.01	0.10		
420R ₁ /01/99 MWTZ 25.0 6.1 7.3 5.9 ND 11.1 0.01 28.1 0.01 0.01 0.01 0.01 1/3/98 25.0 8.0 186.0 6.7 39.7 96.2 0.01 187.2 0.01 0.5 1.0 1.0 145/02/98MWTZ 25.0 7.0. 0.01 6.7 39.7 120.3 0.01 62.4 0.17 3.5 0.01 0.1 145/02/98MWTZ 25.0 6.9 67.0 6.7 39.7 120.3 0.01 62.4 0.17 3.5 0.01 0.1 151/03/98MWTZ 25.0 6.9 67.0 6.7 39.7 120.3 0.01 62.4 3.72 3.5 1.0 0.01 0.1<	409R ₅ /12/98 MWTZ	25.0	6.3	15.6	5.9	ND	10.6	0.29	46.8	0.1	0.01	0.01		
1/3/98 25.0 8.0 186.0 6.7 39.7 96.2 0.01 187.2 0.01 0.5 1.0 145/02/98MWTZ 25.0 7.0. 0.01 6.7 39.7 120.3 0.01 62.4 0.17 3.5 0.01 151/03/98MWTZ 25.0 6.9 67.0 6.7 39.7 120.3 0.01 62.4 3.72 3.5 1.0 153/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 154/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 154/03/98GOTZ 25.0 6.8 279.0 16.7 39.7 120.3 0.01 249.7 0.01 15.0 24.0	420R ₁ /01/99 MWTZ	25.0	6.1	7.3	5.9	ND	11.1	0.01	28.1	0.01	0.01	0.01		
145/02/98MWTZ 25.0 7.0. 0.01 6.7 39.7 120.3 0.01 62.4 0.17 3.5 0.01 0.01 151/03/98MWTZ 25.0 6.9 67.0 6.7 39.7 120.3 0.01 62.4 3.72 3.5 1.0 0.01 153/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 0.1 153/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 0.1 154/03/98GOTZ 25.0 6.8 279.0 16.7 39.7 168.4 0.01 249.7 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 24.0 0.01 15.0 20.0 15.0 3.3<	1/3/98	25.0	8.0	186.0	6.7	39.7	96.2	0.01	187.2	0.01	0.5	1.0		
151/03/98MWTZ 25.0 6.9 67.0 6.7 39.7 120.3 0.01 62.4 3.72 3.5 1.0 153/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 154/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 154/03/98GOTZ 25.0 6.8 279.0 16.7 39.7 168.4 0.01 249.7 0.01 15.0 24.0	145/02/98MWTZ	25.0	7.0.	0.01	6.7	39.7	120.3	0.01	62.4	0.17	3.5	0.01		
153/03/98GOTZ 25.0 7.1 21.9 6.7 0.8 144.4 0.01 62.4 0.01 0.01 0.1 0.1 154/03/98GOTZ 25.0 6.8 279.0 16.7 39.7 168.4 0.01 249.7 0.01 15.0 24.0 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1	151/03/98MWTZ	25.0	6.9	67.0	6.7	39.7	120.3	0.01	62.4	3.72	3.5	1.0		
154/03/98GOTZ 25.0 6.8 279.0 16.7 39.7 168.4 0.01 249.7 0.01 15.0 24.0 15.0 24.0 155/03/98GOTZ 25.0 8.9 600.0 26.7 39.7 120.3 0.01 437.0 0.04 29.0 50.0 10 156/03/98MWTZ 25.0 7.3 44.5 3.3 39.7 168.4 0.01 62.4 0.1 0.5 0.01 10 157/03/98MWTZ 25.0 7.2 20.1 6.7 39.7 96.2 0.01 62.4 0.03 0.01 0.01 10 10 158/03/98KGTZ 25.0 7.8 20.1 3.3 0.01 96.2 0.01 62.4 0.02 0.01 1.0 10	153/03/98GOTZ	25.0	7.1	21.9	6.7	0.8	144.4	0.01	62.4	0.01	0.01	0.1		
155/03/98GOTZ 25.0 8.9 600.0 26.7 39.7 120.3 0.01 437.0 0.04 29.0 50.0 1 156/03/98MWTZ 25.0 7.3 44.5 3.3 39.7 168.4 0.01 62.4 0.1 0.5 0.01 1 157/03/98MWTZ 25.0 7.2 20.1 6.7 39.7 96.2 0.01 62.4 0.03 0.01 0.01 1 158/03/98KGTZ 25.0 7.8 20.1 3.3 0.01 96.2 0.01 62.4 0.02 0.01 1.0 1	154/03/98GOTZ	25.0	6.8	279.0	16.7	39.7	168.4	0.01	249.7	0.01	15.0	24.0		
156/03/98MWTZ 25.0 7.3 44.5 3.3 39.7 168.4 0.01 62.4 0.1 0.5 0.01 157/03/98MWTZ 25.0 7.2 20.1 6.7 39.7 96.2 0.01 62.4 0.03 0.01 0.01 158/03/98KGTZ 25.0 7.8 20.1 3.3 0.01 96.2 0.01 62.4 0.02 0.01 1.0	155/03/98GOTZ	25.0	8.9	600.0	26.7	39.7	120.3	0.01	437.0	0.04	29.0	50.0		
157/03/98MWTZ 25.0 7.2 20.1 6.7 39.7 96.2 0.01 62.4 0.03 0.01 0.01 158/03/98KGTZ 25.0 7.8 20.1 3.3 0.01 96.2 0.01 62.4 0.02 0.01 1.0	156/03/98MWTZ	25.0	7.3	44.5	3.3	39.7	168.4	0.01	62.4	0.1	0.5	0.01		
158/03/98KGTZ 25.0 7.8 20.1 3.3 0.01 96.2 0.01 62.4 0.02 0.01 1.0	157/03/98MWTZ	25.0	7.2	20.1	6.7	39.7	96.2	0.01	62.4	0.03	0.01	0.01		
	158/03/98KGTZ	25.0	7.8	20.1	3.3	0.01	96.2	0.01	62.4	0.02	0.01	1.0		

Sample	Date	Source	Remarks	
28/11/97GOTZ	6/11/97	GOMBE	Gombe Hostel rainfall	
30/11/97GOTZ	10/11/97	GOMBE	-	
29/11/97GOTZ	8/11/97	GOMBE	-	
33/11/97GOTZ	13/11/97	KAKOMBE	GAUGING STATION	
39/11/97GOTZ	19/11/97	GOMBE	-	
35/11/97GOTZ	14/11/97	GOMBE	-	
38/11/97GOTZ	18/11/97	KAKOMBE	GAUGING STATION	
32/11/77GOTZ	12/11/97	MITUMBA		
36/11/97GOTZ	15/11/97	GOMBE	-	
34/11/97GOTZ	13/11/97	GOMBE	-	
27/11/97GOTZ	5/11/97	GOMBE	-	
41/11/97GOTZ	24/11/97	GOMBE	-	
51/12/97GOTZ	7/12/97	GOMBE	-	
40/11/97GOTZ	20/11/97	GOMBE	-	
66/12/97GOTZ	15/12/97	GOMBE	-	
44/11/97GOTZ	26/12/97	GOMBE	-	
45/11/97GOTZ	30/12/97	GOMBE	-	
46/12/97GOTZ	1/12/97	GOMBE	-	
50/12/97GOTZ	6/12/97	GOMBE	-	
47/12/97GOTZ	2/12/97	GOMBE	-	
48/12/97 GOTZ	3/12/97	GOMBE	-	
52/12/97GOTZ	8/12/97	GOMBE		
70/12/97MWTZ	16/12/97	MGUNGA	Alt. 915m.a.s.l.	
73/12/97MWTZ	16/12/97	NYAMHUNG	Tributary Alt.860m.a.s.l.	
53/12/97GOTZ	11/12/97	GOMBE		
42/11/97GOTZ	26/12/97	KAKOMBE BRIDGE		
54/12/97MWTZ	13/12/97	NGONYA STREAM		
67/12/97MWTZ	15/12/97	NYAMNINI	Alt. 780m.a.s.1	
56/12/97GOTZ	14/12/97	MITUMBA	Alt. 880m.a.s.1	
		MITUMBA(W.		
60/12/97GOTZ	14/12/97	SPRING)		
58/12/97GOTZ	14/12/97	MITUMBA	Alt. 790m.a.s.l.	
		MITUMBA		
55/12/97GOTZ	13/12/97	STREAM	Gauging station	
71/12/97GOTZ	16/12/97	NYAMHUNGU	Alt. 940m.a.s.l	
61/12/97GOTZ	14/12/97	MITUMBA	Alt 670m.a.s.1	
74/12/97MWTZ	16/12/97	NGONYA STREAM	At gauge station	
72/12/97MWTZ	16/12/97	NGONYA SPRING	Alt. 880m.a.s.l.	
			4hrs after (03) after peak flash	
64/12/97MWTZ	14/12/97	NGONYA STREAM.	floods	
62/12/97MWTZ	14/12/97	NGONYA STREAM.	During peak flash floods	
63/12/97MWTZ	14/12/97	NGONYA STREAM.	2hrs after peak flash floods	
224/4/98G0TZ	19/4/98	MITUMBA SPRING	Alt 850m.a.s.1	
		KIVUMBA SPRING		
	18/4/98	NGONYA STREAM	Alt.1440m.a.s.1	
218/4/98MWTZ		MAIN SOURCE		
		LUICHE RIVER AT		
241/4/98KGM	27/4/98	THE BRIDGE G	Alt 640m.a.s.l	

Appendix 5a LIST OF ISOTOPE SAMPLES

		SW (SHALLOW		
242/4/08KCM	27/4/09	WELL) (KASUKU).	Alt 660m.a.s.1 Sample bottle	
245/4/98KGM	27/4/98	(ISOTOPE) SW (Shallow well	broken	
242/4/98KGM	27/4/98	Simbo)	Alt 635m.a.s.l	
			Taken at a point of max. Revs.	
213/4/98MWTZ	14/4/98	NGONYA STREAM	80cm from Right edge.	
213/4/901010012	1-1/-1/20	lake confluence point	Velocity 1.875 m/s. at gauging	
-			station.	
101/4/09/0077	14/4/00	MITUMBA	Construction	
191/4/98GOTZ	14/4/98	STREAM	Gauging station	
			sampled at Peak floods at	
166/3/98MWTZ	27/03/98	NGONYA STREAM	5.00PM	
		MSIMBA BORE		
247/4/98KGM	28/4/98	HOLE	760masl	
1.00/2/000 100/777	20/2/00		Peak flash floods sampled at	
169/3/98MW1Z	30/3/98	NGONYA STREAM	3.05pm	
1/4/3/98MW1Z	31/3/98	NGONYA STREAM	Taken at 2.00PM	
202/4/08MWT7	16/04/08	LAVESAMDIE	Ngonya stream lake	
203/4/901/17/	10/04/98	KASUKU BORF		
244/4/98KGM	27/4/98	HOLE (SIMBOR C)	810m.a.s.1	
229/4/98GOTZ	21/4/98	KAKOMBE spring2.	Alt. 1270masl	
			(At the left Bank) Right Bank	
104/4/000077	16/4/09	NCONVA OTDEAM	40cm from left edge Velocity	
194/4/98GUIZ	10/4/98	NGONYA SIKEAM -	0.285 m/s Taken at 40cm from	
			left edge	
		RUBONA Tributary		
217/4/98MWTZ	18/4/98	NGONYA	Alt. 1245m.a.s.1	
		NGONYA		
	01/0/00	RAINFALL	51.0	
146/2/98MW1Z	21/2/98	(MWAMGONGO)	51.0 mm	
222/4/98GUIZ	19/4/98	Mitumba spring	All 900m.a.s.i	
			edge after rain fall $y=0.634$	
212/4/98MWTZ	17/4/98	Ngonya Stream	m/s	
	1,, ,,,,0	r (gonyu Subum	Taken after Rainfall 50cm	
			interval across the span of the	
215/4/98MWTZ	17/4/98	Ngonya Stream	stream	
			Taken after rainfall (at the	
202/4/98MWTZ	16/4/98	Ngonya Stream	Gauge station)	
			Lake surface near Ngonya	
204/4/98MWTZ	16/4/98	Lake sample	stream	
245/4/00KCN	29/4/09	NORAD Compound	A 14, 790	
245/4/98KGM	28/4/98	Bore note at Kigoma	Alt: /80m.a.s.i	
227/4/08COT7	22/4/08	Kakomba Spring	A1t: 815m a c 1	
192/4/98001Z	16/04/98	Ngonya Stream	Taken at the right Bank 0.1	
	10/04/90	rtgonya Sucam	from right Bank edge $y=0.441$	
			m/s	
175/4/98MW	3/4/98	Ngonya Stream	Sampled at 2.40pm	
			3.087km off shore Ngonya	
317/8/98MWTZ	25/8/98	Lake sample	70m below lake surface	

308/8/98MWTZ	23/8/98	Ngonya spring	
361/10/98GOTZ	26/10/98	Mitumba Rain Fall	
358/10/98GOTZ	26/10/98	Kakombe stream	Gauging station
343/8/98GOTZ	27/08/98	Kakombe stream	Gauging station
359/10/98GOTZ	26/10/98	Kakombe Stream,	2hrs after flash floods
313/8/98GOTZ	24/08/98	Spring (b) Mitumba	Alt. 1070m.a.s.1
366/10/98GOTZ	28/10/98	Mitumba Stream	Gauging station
306/8/98MWTZ	23/08/98	Rubona Spring	Alt. 1345m.a.s.l
		Malagarasi River at	
302/8/98UVTZ	20/08/98	Uvinza	
230/4/98	21/4/98	Kakombe spring3	Alt 1130m.a.s.1
211/4/98MWT	17/4/98	Ngonya Stream	Gauging station
			A spring(north) about 15m
226/4/98GO	19/4/98	Mitumba spring	from Mitumba Alt. 880m.a.s.1
186/4/98MW	11/4/98	Mwangongo Rainfall	R ₁ 740m.a.s.1 54.3mm
			At 4.50m 2 nd high flow point
196/04/98MW	16/04/98	Ngonya Stream	v=1.091 m/s
337/8/98MWTZ	26/08/98	Nguka spring.	
303/8/98GOTZ	23/8/98	Mitumba Stream	Gauging station
336/8/98MWTZ	26/8/98	Kashoko spring	
307/8/98MWTZ	23/8/98	Kivumba spring.	Alt. 1440m.a.s.l
		Confluence (Nguka &	
339/8/98MWTZ	25/08/98	Confluence Mpemba)	
		3.087km offshore	Sample taken at 10m below
315/8/98MWTZ	25/8/98	Ngonya stream	Lake Surface
		3.087Km off shore	
317/8/98MWTZ	25/8/98	Ngonya stream	70m below lake surface
		Nyamsunga BH	
300/8/98KGM	20/8/98	(UVINZA) Salt mine	Brine Bore hole 500 ft deep
392/11/98MW	27/11/98	NGONYA stream	Gauging station
412/12/98MW	27/12/98	Mwamgongo Rainfall	R_2 Alt 950m.a.s.l 21mm
406/12/98G0	20/12/98	Mitumba Rainfall	R ₁
408/12/98MW	20/12/98	Mwamgongo Rainfall	R ₃ Alt. 1110m.a.s.1 23.3mm
396/11/98MW	27/11/98	Mwamgongo Rainfall	R ₄ Alt. 1350m.a.s.1 26.8mm
385/11/98MW	25/11/98	Mwamgongo Rainfall	R ₃ 1110m.a.s.1
419/1/99MW	3/1/99	Mwamgongo Rainfall	R ₃ 1110m.a.s.1 22.7mm
416/1/99MW	2/1/99	Mwamgongo Rainfall	R ₄ Alt. 1350m.a.s.1 38.8mm
417/1/99MW	2/1/99	Mwamgongo Rain	R ₃ 1110m.a.s.l 25.3mm
402/12/98GO	6/12/98	Mitumba Rain (R ₂)	R ₂
401/12/98	6/12/98	Mitumba Rain (R ₁)	R ₁
430/1/99 KG	19/1/99	Luiche River	-
370/11/98 MW	23/11/98	Mwamgongo Rainfall	R ₁ 740m.a.s.1 49.0mm
384/11/98 MW	25/11/98	Mwamgongo Rainfall	R ₁ 740m.a.s.1 23.9mm
387/11/98 MW	25/11/98	Mwamgongo Rainfall	R ₅ 1580m.a.s.1 24.3mm
393/11/98 MW	27/11/98	Mwamgongo Rainfall	R ₁ 740m.a.s.1 20.2mm
429/1/99 GO	16/1/99	Mitumba Rainfall	R ₃
382/11/98 MW	25/11/98	Ngonya Stream	-
371/11/98 MW	23/11/98	Mwamgongo Rainfall	R ₂ 980m.a.s.1 26.9mm
415/12/98MW	28/12/98	Mwamgongo Rainfall	R ₄ 1350m.a.s.1 26.1mm
372/11/98 MW	23/11/98	Mwamgongo Rainfall	R ₃ 1110m.a.s.1 25.2mm
427/1/99 GO	12/1/99	MITUMBA Rainfall	R ₁

397/11/98 MW	27/11/98	Mwamgongo Rain	R ₅ 1580m.a.s.1 22.5mm	
376/11/98 MW	23/11/98	Mwamgongo Rain	R ₄ 1350m.a.s.1 30.2mm	
413/12/98 MW	28/12/98	Mwamgongo Rain	R ₅ 1580m.a.s.l 21.1mm	
407/12/98 MW	20/12/98	Mwamgongo Rain	R ₄ 1350m.a.s.1 19.9mm	
377/11/98 MW	23/11/98	Mwamgongo Rainfall	R ₅ 1580m.a.s.1 25.9mm	
395/11/98 MW	27/11/98	Mwamgongo Rainfall	R ₃ 1110m.a.s.1 18.0mm	
423/1/99 GO	5/1/99	Mitumba Stream	-	
398/12/98 MW	6/12/98	Mwamgongo Rain	R ₁ 740m.a.s.1 34.1mm	
374/11/98 GO	23/11/98	Mitumba Rainfall	R ₄	
386/11/98 MW	25/11/98	Mwangongo Rainfall	R ₄ 1350m.a.s.1 25.1mm	
379/11/98 GO	25/11/98	Mitumba Rainfall	R ₁	
375/11/98 GO	23/11/98	Mitumba Stream	-	
400/12/98 GO	6/12/98	Mitumba Stream	-	
399/12/98 MW	6/11/98	Ngonya Stream	-	
380/11/98 GO	25/11/98	Mitumba Rainfall	R ₂	
368/11/98MW	16/11/98	Mwamgongo Rainfall	R ₁ 740m.a.s.l 11.7mm	
411/12/18MW	23/12/98	Ngonya Stream	-	
422/12/98G0	23/12/98	Mitumba Rainfall	R ₁	
389/11/98G0	25/11/98	Mitumba Rainfall	R ₃	
404/12/98MW	12/12/98	Ngonya Stream	-	
369/11/98MW	23/11/98	Ngonya Stream	-	
405/12/98MW	20/12/98	Ngonya Stream	-	
69/12/97MWTZ	16/12/97	Kivumba Tributary	Alt. 1060m.a.s.1	
59/12/97GOTZ	14/12/97	Mitumba	Alt. 670m.a.s.1	
		Nyandiga Confluence		
68/12/97MWTZ	15/12/97	point.	780m.a.s.1	
		Mitumba tributary		
57/12/97GOTZ	14/12/97	(intermittent)	880m.a.s.1	
23/11/97MWTZ	1/11/97	Nyandiga Confluence	780m.a.s.1	
		Nyaruhunga (b)		
19/11/97MWTZ	1/11/97	Spring	980m.a.s.1	
25/11/97GOTZ	2/11/97	Kakombe(b) spring	1050m.a.s.1	
07/10/97GOTZ	29/10/97	Mitumba Stream	Gauging station	
		Kivumba Tributary		
22/11/97MWTZ	1/11/97	spring	1145m.a.s.l	
10/10/97GOTZ	30/10/97	Mitumba Stream	Gauging station	
		Mitumba Stream		
17/10/97GOTZ	31/10/97	(Gauging station)	Alt. 740m.a.s.l	
18/11/97GOTZ	1/11/97	Nyaruhunga tributary	900m.a.s.1	
09/10/97GOTZ	30/10/97	Kakombe Stream	Gauging station	
21/11/97MWTZ	1/11/97	Mgunga Spring	1015m.a.s.1	
13/10/97MWTZ	30/10/97	Ngonya Stream	Gauging station	
		Mitumba Upper		
15/10/97GOTZ	31/10/97	Spring	890m.a.s.l	
16/10/9/GOTZ	31/10/97	Mitumba confluence	//Um.a.s.l	
12/10/97MWTZ	30/10/97	Mbale Spring	830m.a.s.l	
26/11/97GOTZ	2/11/97	Kakombe Spring. (d)	980m.a.s.1	
24/11/9/GOTZ	2/11/97	Kakombe Tributary	925m.a.s.l	
08/10/9/MWTZ	29/10/97	Ngonya Stream	Gauging station 740m.a.s.l	
11/10/9/MWTZ	30/10/97	Nyamunini Spring	880m.a.s.1	
20/11/97MWTZ	1/11/97	Nyaruhunga stream	1040m.a.s.l	
14/10/97GOTZ	31/10/97	Mitumba West	980m.a.s.l	

		tributary		
86/12/97MWTZ	23/12/97	Ngonya Stream	Gauging station 740m.a.s.l	
_				
89/12/97MWTZ	28/12/98	Ngonya Stream	Gauging station 740m a s l	
84/12/97MWTZ	22/12/97	Ngonya Stream	Gauging station 740m.a.s.1	
77/12/97MWTZ	18/12/97	740m a s 1	Gauging station 740m a s 1	
91/12/97MW	29/12/97	Ngonya Stream	Gauging station 740m a s 1	
		Ngonya Sucam	(Takan at 1/6 of stream span	
			from R/Edge 1 117m Piver	
98/04/28MWTZ	16/4/97	Ngonya Stream	span = 6.70 m Sediment at 1.117 m	
			from R/Bank	
85/12/97GOTZ	22/12/97	Mitumba Stream	Gauging station	
80/12/97MWTZ	20/12/97	Ngonya Stream	Gauging station	
87/12/97 GOTZ	23/12/97	Mitumba Stream	Gauging station	
82/12/07MWTZ	23/12/07	Ngonya Stroom	Gauging station	
$\frac{32}{12} \frac{37}{9} \frac{11}{10} \frac{11}{10} \frac{12}{10} \frac{31}{10} \frac{12}{10} \frac{31}{10} \frac{12}{10} \frac{31}{10} \frac{12}{10} \frac{31}{10} \frac{12}{10} \frac{31}{10} \frac{31}$	17/12/97	Ngonya Stroom	Gauging station	
73/12/97 for 12	21/12/97	Mitumbo Stroom	Cauging station	
89/12/9/001Z	21/12/97	Mituilloa Suealli Naonyo Stroom	Cauging station	
00/12/9/1VI W 1Z	21/12/97	MWAMCONCO	D 740m a a 1 22 6mm	
233/4/98	23/4/98		R ₁ /4011.a.s.1 52.011111	
254/4/08/14/1	25/4/09	KAINFALL NCONVA STDEAM	Cousing station	
234/4/98/IVI W	23/4/98		Gauging station	
283/4/98/GU	10/5/98		D 740m and 112mm	
203/98/1VI W	4/5/98		K_1 /40m.a.s.i 1.5mm	
204/5/NAXX	14/5/00	KAINFALL	D. 740	
284/3/1VI W	14/5/98		R_1 /40m.a.s.i 4.4mm	
269/5/NAW	6/5/09	MWAMCONCO	D 740m a a 1 1 6mm	
200/J/IVI VV	0/3/98		K_1 /4011.a.s.1 1.011111	
281/5/0860	0/5/08		Р	
201/3/9000	9/ 5/ 90	RAINFALI	R]	
269/5/98/MW	7/5/98	NGONYA STRFAM	Gauging station	
279/5/98/MW	10/5/98	MITLIMBA	R ₁	
2191519011111	10/5/70	RAINFALL		
261/5/98/GO	3/5/98	MITUMBA	R ₁	
		RAINFALL		
270/5/98/MW	7/5/98	NGONYA STREAM	Gauging station	
298/7/98/KGTZ	21/7/98	KGM. MAJI YARD	Rainfall = 20.3mm	
278/5/98/MW	9/5/98	MWAMGONGO	R ₁ 740m.a.s.1 37.7mm	
		RAINFALL	-	
265/5/98/GO	5/5/98	MITUMBA STREAM	Gauging station	
259/5/98/MW	1/5/98	MWAMGONGO	R ₁ 740m.a.s.1 1.0mm	
		RAINFALL		
264/5/98/MW	5/5/98	MWAMGONGO	R ₁ 740m.a.s.1 3.5mm	
		RAINFALL		
271/5/98MW	7/5/98	MWAMGONGO	R ₁ 740m.a.s.1 21.6mm	
		RAINFALL		
277/5/98GO	8/5/98	MITUMBA	Gauging station	
		STREAM		
272/5/98MW	8/5/98	NGONYA STREAM	Gauging station	
275/5/98GO	8/5/98	MITUMBA STREAM	Rainfall	
256/4/98GO	25/5/98	MITUMBA STREAM	Gauging station	
276/5/98GO	8/5/98	MITUMBA STREAM	Gauging station	
282/5/98GO	10/5/98	MITUMBA STREAM	Gauging station	

260/5/98MW	3/5/98	MWAMGONGO	R ₁ 740m.a.s.1 6.3mm	
		RAINFALL		
273/5/98MW	8/5/98	NGONYA STREAM	Gauging station	
267/5/98GO	6/5/98	MITUMBA STREAM	Gauging station	
274/5/98MW	8/5/98	MWAMGONGO	R ₁ 740m.a.s.l 12.5mm	
		RAINFALL		
266/5/98GO	6/5/98	MITUMBA STREAM	Gauging station	
296/7/98KGM	21/5/98	MATYAZO KALINZI	66m deep bore hole	
293/7/98GOTZ	18/5/98	MITUMBA STREAM	Reducing environ.	
297/7/98UVZ/KG M	21/7/98	NYAZA SALT	Brine bore hole 500ft deep from Nyamsunga	
291/7/98GOTZ	18/7/98	MITUMBA SPRING SOURCE	Alt 1060m.a.s.1	
292/7/98GOTZ	18/7/98	MITUMBA SPRING (A)	Alt 1070m.a.s.1	
290/7/98GOTZ	18/7/98	MITUMBA STREAM	Alt 740m.a.s.1 Reducing	
			environ.(Rocky Algae)	
295/7/98MWTZ	19/7/98	NGONYA STREAM	Reducing environ.(Weeds	
			Plants at Gauging station 770m.a.s.l)	
294/7/98MWTZ	19/7/98	NYAMUNINI SPRING	Alt 880m.a.s.1 Protected spring	
186/4/98/MWTZ	10/4/98	NGONYA STREAM	Gauging station	
178/4/98/MWTZ	8/4/98	NGONYA STREAM	Gauging station	
36/12/97/MW	18/12/97	MWAMGONGO	R ₁ 740m.a.s.l No rain gauge	
		RAINFALL		
5/1/98/MWTZ	1/1/98	MWAMGONGO	R ₁ 740m.a.s.l No rain gauge	
		RAINFALL		
181/4/98/MWTZ	9/4/98	NGONYA STREAM	Gauging station	
92/12/97/MWTZ	30/12/97	NGONYA STREAM	Gauging station	
161/3/98/MWTZ	21/3/98	NGONYA STREAM	Gauging station	
100/1/98/MWTZ	4/1/98	NGONYA STREAM	Gauging station	
187/4/98/MWTZ	11/4/98	NGONYA STREAM	Gauging station	
79/12/97/MWTZ	20/12/97	NGONYA STREAM	Gauging station	
162/3/98/MWTZ	21/3/98	NGONYA STREAM	Gauging station	
180/4/98/MWTZ	9/4/98	NGONYA STREAM	At peak flash flood	
190/4/98/GO/TZ	12/4/98	MUTUMBA		
		RAINFALL		
171/3/98/MWTZ	30/3/98	NGONYA STREAM	Gauging station	
72/12/97/GOTZ	17/12/97	GOMBE (RAIN)		
179/4/98/MWTZ	8/4/98	MWAMGONGO	R ₁ 740m.a.s.1 42.8mm	
	20/2/00	(RAINFALL)		
170/3/98/MW1Z	30/3/98	NGONYA STREAM	Gauging station	
81/12/97/MW1Z	21/12/97	NGONYA STREAM	Gauging station	
1/2/3/98/NIW1Z	30/3/98	RAIN FALL	$\kappa_1/40$ m.a.s.1 30.3mm	
160/3/98/MWTZ	21/3/98	NGONYA STREAM	Gauging station	
103/01/98/GOTZ	22/01/98	MUTUMBA		
		CONFLUENCE		
112/01/98/MWTZ	23/01/98	NYARUHUNGA (B)	Alt 980m.a.s.1	
		SPRING		
117/01/98/MWTZ		NGONYA(GAUGIN		

		G STATION)		
115/01/98/MWTZ	23/01/98	MBALE SPRING Alt. 830m.a.s.l.		
114/01/98/MWTZ	23/01/98	NGONYA –MAIN		
		CONFLUENCE		
105/01/98/MWTZ	22/01/98	NGONYA	Gauging station	
104/01/98/GOTZ	22/01/98	AT THE LAKE	Zero stream flow velocity after	
		SURFACE	the lake stream confluence	
111/01/98/MWTZ	23/01/98	NYARUHUNGA	Alt. 960m.a.s.l	
		MAIN		
108/01/98/GOTZ	23/01/98	LAKE MITUMBA		
		STREAM		
		CONFLUENCE		
118/01/98/MWTZ	23/01/98	LAKE SURFACE	150m offshore Ngonya stream	
102/1/98/GOTZ	22/01/98	MITUMBA AT THE		
	22/1/00	GAUGING STATION		
107/01/98/MW1Z	22/1/98	LAKE NGONYA	AT 8.30m offshore Ngonya	
		SI KEAM MIXING	stream at zero stream velocity	
00/12/07/MWT7	28/12/07	PUINI NGONVA STREAM	Cauging station	
90/12/97/1v1 vv 12	20/12/97	NGONYA	Gauging station	
119/01/96 169/2/08/COTZ	20/2/08	MITIMDA STDEAM	Gauging station	
108/3/98/001Z	30/3/98 7/4/06	NGONVA STREAM	Gauging station	
1/0/4/90/101 W 12	7/4/90	MCUNGA CHINI	Alt 1010m a s 1	
110/01/90/10100 12	23/01/98	SPRING	Alt 1010III.a.s.i	
106/01/98/MWT7	22/01/98	NGONYA STRFAM	Confluence point	
100/01/98/MWTZ	22/01/98	NVARUHUNGA (A)	Alt 960m a s 1	
115/01/96/1010012	23/01/98	SPRING.	Ait 700iii.a.s.i	
112/1/98/MWTZ	23/01/98	NYARUHUNGA (B)	Alt 980m.a.s.1	
127/1/98/MWTZ	31/1/98	NGONYA STREAM	Gauging station	
144/2/98/MW	13/2/98	NGONYA STREAM	Gauging station	
137/2/98/MW	6/2/98	NGONYA STREAM	Gauging station	
138/2/98/MW	7/2/98	NGONYA STREAM	Gauging station	
136/2/98/MW	5/2/98	NGONYA STREAM	Gauging station	
128/1/98/GOTZ	31/1/98	MITUMBA STREAM	Gauging station	
126/1/98/GOTZ	30/1/98	MITUMBA		
		RAINFALL		
139/2/98/MW	8/2/98	NGONYA STREAM	Gauging station	
135/2/98/MW	4/1/98	NGOYA STREAM	Gauging station	
129/2/98/GOTZ	1/2/98	MITUMBA STREAM	Gauging station	
140/2/98/MW	12/2/98	NGONYA STREAM	Gauging station	
125/1/98/MW1Z	30/1/98	NGONYA STREAM	Gauging station	
134/2/98/MW	3/2/98	NGONYA STREAM	Gauging station	
130/2/98/MW	1/2/98	MITUMBA STREAM	Gauging station	
124/1/98/GOTZ	30/1/98	NGONYA STREAM	Gauging station	
141/2/98/MW	13/2/98		Gauging station	
133/2/98/GU	3/2/98	NGONVA STREAM	M Gauging station	
131/2/90/IVI W	2/2/98	MITIMDA CTDEAM	AM Gauging station	
132/2/2000 122/1/09/MM	212170	NCONVA STREAM	Gauging station	
1/2/2/08/CO	27/1/70 1//2/1/08	NGONYA STREAM	Gauging station	
172/2/98/COT7	$\frac{1}{2}/\frac{2}{1}$	MITIMRA CTREAM	Gauging station	
143/2/98/GO	15/2/98	MITIMRA		
	15/2/90	RAINFALL		

346/9/98/GOTZ	29/9/98	MITUMBA RAIN		
225/0/00/0077	26/0/00		0.2 m Offelson Mitsenslaget	
335/8/98/GUIZ	26/8/98	LAKE SURFACE	8.3m Offshore Mitumba at	
			30m.below lake surface	
343/9/98/MWTZ	27/9/98	NGONYA STREAM	Gauging station	
351/10/98/GOTZ	2/10/98	MITUMBA STREAM	Gauging station	
			Sample taken 278m offshore	
334/8/98/GOTZ	26/8/98	LAKE SAMPLE.	Mitumba at depth 30below	
			lake surface	
350/10/98/GOTZ	1/10/98	MITUMBA RAIN		
550, 10, 90, 80 IL	1/10/90	FALL		
		MWAMGONGO	$R_{2}740m$ as 1, 40, 5mm	
365/10/98/MW	28/10/98		K[/+011.a.s.1 +0.511111	
241/00/00/00/77	26/0/09	NITLINDA		
541/09/98/GUIZ	20/9/98			
	10/10/00	RAINFALL		
352/10/98/MW	13/10/98	RAIN FALL MW		
363/10/98/MW	28/10/98	NGONYA STREAM	Gauging station	
319/8/98/MWTZ	15/8/98	NGONYA STREAM	Gauging station	
367/10/98/GOTZ	28/10/98	MITUMBA RAIN		
		FALL		
364/10/98/MW	28/10/98	NGONYA STREAM	2hrs after flash floods	
			3.087 km off shore Ngonya	
318/8/98/MWTZ	25/8/98	LAKE SAMPLE	stream 90m below Lake	
			surface	
320/8/98/MWT7	25/8/98	NGONYA STEAM	Gauging station	
326/8/08/COTZ	25/8/08	MITIMPA STDEAM	Gauging station	
224/9/09/COTZ	26/8/98		Sample taken 278m off shore	
334/0/90/UUIZ	20/0/90	LAKE SAMIFLE	Sample taken 278m on shore	
252/10/00/00/07	26/0/00			
353/10/98/GOTZ	26/8/98	LAKE SAMPLE	Sample taken 2/8m	
321/8/98/GOTZ	25/8/98	LAKE SAMPLE	Sample taken at 10m below	
			Lake surface	
			300m.Ngonya off shore.	
325/8/98/MWTZ.	25/8/98	LAKE SAMPLE	Sample taken below Lake	
			surface	
224/0/00/1400/777	25/0/00		300m. off shore Ngonya 90m	
324/8/98/IVI W 1 Z.	23/8/98	LAKE SAMPLE	below Lake Surface	
349/9/98/MWTZ	30/9/98	NGONYA STREAM	Gauging station	
342/9/98/GOTZ	27/9/98	MITUMBA STREAM	Gauging station	
329/8/98/GOTZ	26/8/98	MITUMBA STREAM	Gauging station	
332/8/98/GOTZ	26/8/98	LAKE SAMPLE	Sample taken 278m offshore	
55 <u>2</u> /0/90/0012	20/0/90		Mitumba at the lake surface	
226/10/08/MW	20/10/08	MWAMGONGO	P.740m a.s.1.24mm	
550/10/90/1VI VV	29/10/98		K1/4011.a.s.1 2.411111	
255/10/00/0077	14/10/00	KAIN FALL		
229/9/09/00/L	14/10/98		A 14 920m o = 1	
338/8/98/MWIZ	25/8/98	MBALE SPKING.	Ait 850m.a.s.i	
544/9/98/GOTZ	27/9/98	MITUMBA RAIN		
		FALL		
305/8/98/MWTZ	23/8/98	LAKE SAMPLE	1.142 km offshore Ngonya	
			stream	
328/8/98/GOTZ	26/8/98	LAKE SAMPLE	Sample taken offshore	
			Mitumba at 50m.below lake	
			surface	
348/9/98/MW	29/9/98	MWAMGONGO R ₁ 740m.a.s.1 3.5mm		

		RAINFALL		
331/8/98/GOTZ	26/8/98	LAKE SAMPLE	Sample taken offshore Mitumba at 100m below lake surface	
333/8/98/GOTZ	26/8/98	LAKE SAMPLE	Sample taken 278m offshore Mitumba	
330/8/98/GOTZ	26/8/98	LAKE SAMPLE	Sample taken 278m offshore Mitumba at 90m below lake surface	
316/8/98/MWTZ	26/8/98	LAKE SAMPLE	Sample taken at 3.087Km offshore Ngonya at 50m below lake surface	
345/9/98/GOTZ	28/9/98	MITUMBA STREAM	Gauging station	
347/9/98/GOTZ	30/9/98	LAKE SAMPLE	Confluence (Ngonya Stream & Lake)	
340/8/98/MWTZ	26/8/98	LAKE SAMPLE	Confluence (Ngonya Stream & Lake)	
354/10/98/GO	13/10/98	MITUMBA RAINFALL		
322/8/98/MWTZ	25/8/98	LAKE SAMPLE	offshore Ngonya taken at 50m below lake surface	
327/8/98/GOTZ	26/8/98	LAKE SAMPLE	Offshore Mitumba taken at 10m below lake surface	
342/9/98/GOTZ	27/9/98	MITUMBA STREAM	Gauging station	
356/10/98/MW	15/10/98	MWAMGONGO RAINFALL	$R_1740m.a.s.1$ 7.8mm	
314/8/98/MWTZ	25/8/98	LAKE SAMPLE	3.087km off shore Ngonya at Lake surface	
134/2/98/MWTZ	3/2/98	NGONYA STREAM	Gauging station	
223/4/98/GOTZ	19/9/98	SPRING NORTH OF MITUMBA	Alt 1070m.a.s.1	
152/3/98/MWTZ	13/3/98	MWAMGONGO RAINFALL	R ₁ 740m.a.s.l 45.6mm	
135/2/98/MWTZ	4/2/98	NGONYA STREAM	Gauging station	
148/2/98/MWTZ	25/2/98	NGONYA STREAM	Gauging station	
132/2/98/GOTZ	2/2/98	GOMBE STREAM	Gauging station	
158/3/98/KGM	21/3/98	NYAKAGENI SPRING(KIGOMA TOWN)	740m.a.s.1	
159/3/98/KGM	23/3/98	RUTARE SPRING	300m East of the Lake	
234/4/98/GOTZ	21/4/98	MITUMBA STREAM	Gauging station	
195/4/98/MWTZ	16/4/98	NGONYA STREAM	A composite sample taken at gauging station	
246/4/98/KGM	28/4/98	NYAKAGENI SPRING	Alt 740m.a.s.1	
221/9/98/GOTZ	18/4/98	MITUMBA STREAM	Gauging station	
149/2/98	25/2/98	MWAMGONGO RAINFALL	R ₁ 740m.a.s.1 43.1mm	
248/4/98/KGM	28/4/98	KABEMBA SPRING	At Msimba Alt 740m.a.s.l	
250/4/98/KGM	28/4/98	MALAGARASI RIVER	Sample taken in the middle of the river Alt 760m.a.s.l	
165/3/98/MWTZ	27/3/98	NGONYA STREAM	Sample taken at gauging station during peak flash	

			floods		
193/4/98/MWTZ	16/4/98	NGONYA STREAM	At 0.90m of Max flow velocity of 1.253m/sec		
			Taken at a point of Min		
216/4/98/MWTZ	17/4/98	NGONYA STREAM	Revolutions 6.60m from Right		
			bank at velocity 0.097m/sec		
207/4/98/GOTZ	17/4/98	MITUMBA STREAM	Taken at 10cm from right bank		
	0/4/00		of stream at velocity 0.0m/s		
183/4/98/MWTZ	9/4/98	NGONYA STREAM	Gauging station		
251/4/98/KGM	28/4/98	MALAGARASI	Branch Alt 770m.a.s.1		
214/4/98/MWTZ	17/4/98	NGONYA STREAM	Taken at 40cm from left edge		
	17/4/90		1.799m/s		
184/4/08/CO	0/4/08	MITIIMPA STDEAM	At peak flash floods sampled		
104/4/90/00	9/4/90		at gauging station		
249/4/98/KGM	28/4/98	SHALLOW WELL	15m depth Msimba		
100/4/00 8 444	0/4/00	(SW)	Alt.750m.a.s.l		
182/4/98/MW	9/4/98	NGONYA STREAM	Gauging station		
206/4/98GO	17/4/98	MITUMBA SIKEAM	Taken at 25cm form left edge $y=0.152 \text{ m/s}$		
227/4/08/CO	10///08	MITUMBA SPRING	50m north of Mitumba main		
221/4/90/00	19/4/98 MITUMBA SPRING		stream at 865m a s 1		
205/4/98/GO	17/4/98	MITUMBA STREAM	Gauging station		
219/4/98/MWTZ	18/4/98	NYARUHUNGA-	Alt 980m a s 1		
	10/ 1/20	TRIBUTARY			
225/4/98/GOTZ	19/4/98	MITUMBA SPRING	20m north of Mitumba main		
			stream station at 880m.a.s.1		
131/2/98/MWTZ	2/2/98	NGONYA STREAM	Gauging station		
220/4/98/GOTZ	18/4/98	NYAMUNINI	At the intake Alt 880m.a.s l		
		SPRING	protected spring		
228/4/98/GOTZ	21/4/98	KAKOMBE SPRING1.	Alt 1290m.a.s.1		
153/3/98/GOTZ	20/3/98	MITUMBA STREAM	Gauging station		
173/3/98MWTZ	31/3/98	NGOYA STREAM	Gauging station		
130/2/98/MWTZ	1/2/98	NGOYA STREAM	Gauging station		
177/4/98/GOTZ	8/4/98	MITUMBA STREAM	Gauging station		
150/3/98MWTZ	1/3/98	NGONYA STREAM	Gauging station		
252/4/98KG	30/4/98	LAKE SAMPLE	(Close to NORAD compound.) Alt 730m.a.s.l		
133/2/98	3/2/98	MITUMBA STREAM	Gauging station		
210/4/98GOTZ	17/4/98	LAKE SAMPLE	Mixing point of Mitumba & the lake		
157/3/98/MWTZ	20/3/98	NYAMUNINI	Alt 880m.a.s.l protected spring		
		SPRING			
312/8/98//GOTZ	24/8/98	MITUMBA SPRING			
362/10/98/GOTZ	27/10/98	MITUMBA STREAM	Gauging station		
309/8/98MWTZ	23/8/98	LAKE SAMPLE	Ngonya stream lake confluence		
357/10/98/MW	15/10/98	NGONYA STREAM	Gauging station		
344/9/98GOTZ	27/9/98	MITUMBA	R ₁		
		RAINFALL			
341/8/98/GOTZ	27/8/98	KAKOMBE SPRING			

360/10/98 GOTZ	26/10/98	KASEKELA		
		RAINFALL		
310/8/98MWTZ	23/8/98	NYAMUNINI	Alt 880m.a.s.l protected spring	
		SPRING.		
311/8/98 GOTZ	24/8/98	MITUMBA SPRING		
345/8/98GOTZ	27/8/98	LAKE SAMPLE	KAKOMBE(Confluence with	
			lake)	
299/7/98UVI-	29/7/98	NYAMSUNGA BH-	Brine bore hole 500ft deep	
KGTZ		UVINZA		
301/8/98UVITZ	20/8/98	NYAMSUNGA BH-	Brine bore hole 500ft deep	
		UVINZA		
421/1/99MW	12/1/99	MWANGONGO	R ₁ 740m.a.s.1 59.6mm	
		RAINFALL(R ₁₎		
381/11/98MW	25/11/98	NGONYA STEAM	Gauging station	
390/11/98GO	27/11/98	MITUMBA	R ₁	
		RAINFALL		
424/1/98GO	9/1/99	MITUMBA		
		RAINFALL(R ₃)		
383/11/98MW	25/11/98	MWANGONGO	R ₂ 950m.a.s.1 52.2mm	
		RAINFALL		
378/11/98GO	25/11/98	MITUMBA STREAM	Gauging station	
394/11/98MW	27/11/98	MWANGONGO	R ₂ 950m.a.s.1 18.7mm	
		RAINFALL		
415/12/98	28/12/98	MWANGONGO	R ₄ 1350m.a.s.1 26.1mm	
		RAINFALL		
418/1/98MW	2/1/99	MWANGONGO	R ₅ 1580m.a.s.1 27.4mm	
		RAINFALL		
403/12/98GO	6/12/98	MITUMBA	R_3 Cumulative rainfall Alt.	
		RAINFALL	1260m.a.s.1	
428/1/98GO	16/1/99	MITUMBA	R_3 Cumulative rainfall Alt.	
		RAINFALL	1260m.a.s.l	
4261/1/98MW	17/1/99	NGONYA STEAM	Gauging station	
388/11/98GO	25/11/98	MITUMBA	R_4 Cumulative rainfall Alt.	
		RAINFALL	1530m.a.s.l	
409/12/98	20//12/98	MWANGONGO	R ₅ 1580m.a.s.l 23.1mm	
		RAINFALL		
410/12/98MW	20/12/98	MWANGONGO	R ₂ 950m.a.s.l 26.1mm	
		RAINFALL		
425/1/99GO	9/1/99	MITUMBA	R_2 Cumulative rainfall Alt.	
		RAINFALL	930m.a.s.1	
373/11/98GO	23/11/98	MITUMBA	R_1 Cumulative rainfall Alt.	
		RAINFALL	790m.a.s.l	
391/11/98GO	27/11/98	MITUMBA	R_4 Cumulative rainfall Alt.	
		RAINFALL	1530m.a.s.l	

Appendix 5b Stable Isotope Data

Sample numbers as labelled during sampling (Field Sample I. D)	Source of the samples	Average reference standard Sample gsdi for d ¹⁸ O	GSDI= - 8.5 Water sample d ¹⁸ O content with reference to the reference standard (gsdi)	Calculated water sample d ¹⁸ O content with reference to SMOW (Standard Mean Oceanic Water)	Average reference standard Sample gsdi for d ² H	Water sample deuterium (d ² H) content with reference to the gsdi	Calculated water sample d ² H content with reference to SMOW (Standard Mean Oceanic Water)
			measured	SMOW	avg gsdi	Deuterium	Deuterium
	#	#	#	#	#	measured	calculated
			d18-O	d18-O smow			
			-12.325	-8.52	-12.3005		
			-12.342	-8.54			
			-12.296	-8.50			
			-12.239	-8.44			
30/3/98/MW	Rainfall		-7.409	-3.61		-6.48	-15.41
1/MAY/98/MW	,,		-3.82	-0.02		13.59	5.82
26/OCT/98/GO	,,		-3.413	0.39		24.32	14.98
6/MAY/98/MW	,,		-5.992	-2.19		-1.66	-10.69
1/OCT/98/MW	,,		-2.665	1.14		27.57	18.19
8/MAY/98/GO	,,		-7.486	-3.69		-8.89	-17.83
5/MAY/98/MW	,,		-7.417	-3.62		-7.74	-16.70
13/OCT/98/MW	,,		-1.284	2.52		29.52	20.12
14/MAY/98/MW	,,		-3.249	0.55		26.76	17.39
26.SEPT/98/GO	,,		-3.938	-0.14		16.68	7.43
12/APR/98/GO	,,		-9.433	-5.63		-22.16	-30.94
28/OCT/98/MW	,,		-5.812	-2.01		2.8	-6.28
13/MARCH/98/MW	,,		-5.178	-1.38		12.77	3.57
3/MAY/98/MW	,,		-7.599	-3.80		-13.9	-22.78
26/OCT/98/KASKEL A	,,		-5.028	-1.23		13.39	4.18
25/APR/98/MW	,,		-8.74	-4.94		-19.7	-28.51
3/MAY/98/GO	,,		-8.112	-4.31		-15.06	-23.93
9/MAY/98/MW	,,		-8.094	-4.29		-8.02	-16.97
8/APR/98/MW	,,		-10.147	-6.35		-26.99	-35.72
21/JULY/98/KGM	,,		-5.869	-2.07		11.71	2.52

#	#	#	#	#	#		
3CC	8 HRS			d18-0			
			12 107	smow	12 2235		
			-12.197	-8.53	-12.2255		
			-12.230	-8.33			
			-12.171	-8 53			
			12.23	0.55			
29-SEPT-98-MW	Rainfall		-3.593	0.13		20.84	11.54
29-SEPT-98-GO	.,		-3.808	-0.08		19.12	9.84
5-MAY-98-GO	,,		-7.755	-4.03		-10.89	-19.81
13-OCT-98-GO	,,		-1.06	2.66		28.27	18.88
#	#	#	#	#	#		
3CC	8 HRS			d18-0			
			10 540	smow	10 50 155		
			-12.548	-8.45	-12.59475		
			-12.572	-8.48			
			-12.6/5	-8.58			
			-12.584	-8.49			
24 Jap 08	Doinfall		10.907	671		22.2	40.12
24-Jail-98	Kaililaii		-10.807	-0./1		-32.2	-40.12
15-Feb-98	,,		-14.512	-10.22		-37.08	-05.00
25-Apr-98	,,		0 320	-0.22		-20.02	-50.52
6-May	,,		-9.329	-5.25		-10.36	-20.43
9-May-98	,,		-8 376	-4.28		-24.10	-15.04
27-Sep-98	,,		-4 209	-0.11		-20.1	-27.97
28-Oct-98	,,		-5 936	-1.84		4 48	-3.32
18-Dec-97			-15.863	-11.77		-67.04	-75.05
25-Feb-98	,,		-6.078	-1.98		10.2	2.42
11-Apr-98	,,		-9.256	-5.16		-20.27	-28.14
4-May-98	,,		-7.88	-3.79		-11.51	-19.35
7-May-98	,,		-8.546	-4.45		-3.37	-11.19
8-May-98	,,		-7.479	-3.38		-5.04	-12.86
15-Oct-98	,,		-4.34	-0.25		19.15	11.41
29-Oct-98	,,		-7.209	-3.11		-0.79	-8.6
3-Dec-97	,,		-14.899	-10.80		-64.97	-72.99
8-Dec-97	,,		-18.15	-14.06		-95.23	-103.35
299-07-98-UVZ-			-5.054	-0.96		0.42	-7.38
KGM 245/4/98-KGM			_7 281	_3 10		_3 16	_10.08
2-13/ 1 / 70-100101			-7.201	-5.19		-5.10	-10.90

#	#	#	#	#	#		
5CC	8 HRS			d18-0			
			12.065	smow	12 26275		
			-13.265	-8.40	-13.363/5		
			-13.375	-8.51			
			-13.434	-8.57			
			-13.381	-8.52			
60/12/97			-8.148	-3.28		0.51	-8.32
420/1/99MW			-7.137	-2.27		2.59	-5.21
229/4/98/GO			-10.135	-5.27		-15.58	-23.44
292/7/98			-8.468	-3.60		-3.72	-11.54
242/4/98/KGM			-8.904	-4.04		-10.04	-17.85
297/7/98/UVZ/KGM			-4.959	-0.10		3.95	-3.84
300/8/98/UVZ/KGM			-6.399	-1.54		-0.87	-8.68
244/4/98/MW			-8.138	-3.27		-4.14	-11.96
220/4/98/MW			-8.53	-3.67		-5.4	-13.22
306/8/98/GO			-8.194	-3.33		-0.99	-8.8
226/4/98/GO			-9.046	-4.18		-9.97	-17.81
11/10/97/MW			-8.475	-3.61		-3.45	-11.27
26/11/97GO			-8.375	-3.51		-3.67	-11.49
157/3/98MW			-8.17	-3.31		-4.42	-12.24
158/3/98KGM			-8.007	-3.14		-5.31	-13.13
248/4/98/KGM			-8.492	-3.63		-9.29	-17.13
301/8/98/UVZ/KGM			-6.082	-1.22		-2.76	-10.57
296/7/98KGM			-8.718	-3.85		-6.69	-14.52
247/4/98KGM			-8.014	-3.15		-4.31	-12.13
291/7/98/GO			-8.45	-3.59		-4.87	-12.69
							12.07
#	#	#	#	#	#		
500	8 HRS			d18-0			
				smow			
			-12.199	-8.45	-12.249	-51.31	
			-12.329	-8.58		-51.17	
			-12.242	-8.49		-50.14	
			-12.226	-8.48		-50.501	
293/7/98 GO			-7.07	-3.32		-2.34	-10.16
380/11/98/GO			-5.279	-1.53		9.37	1.59
311/8/98/GO			-7.316	-3.57		-2.94	-10.76
313/8/98GO			-6.696	-2.95		-1.68	-20.29
112/01/98MW			-7.1	-3.35		-3.78	-11.6

110/01/98MW			-8.715	-4.97		-18.06	-25.92
307/8/98MW			-7.256	-3.51		-2.97	-10.79
310/8/98MW			-7.239	-3.49		-4.55	-12.37
294/7/MW			-7.076	-3.33		-3.07	-10.89
370/11/98MW			-5.68	-1.93		5.09	-2.7
374/11/98MW			-5.801	-2.05			
383/11/98MW			-6.193	-2.44		6.01	-1.78
413/12/98MW						14.02	6.25
415/12/98MW			-5.269	-1.52		15.8	8.04
424/1/99MW			-4.37	-0.62		19.8	12.05
418/1/99MW			-6.929	-3.18		-1.88	-9.7
397/11/98MW			-6.354	-2.61		7.85	0.06
409/12/98MW			-5.684	-1.94		11.08	3.3
374/11/98GO						1.12	-6.69
371/11/98MW			-5.856	-2.11		3.44	-4.36
#	#	#	#	#	#		
5CC	8 HRS			d18-0			
				smow			
			-12.152	-8.49	-12.1585		
			-12.183	-8.52			
			-12.158	-8.50			
			-12.141	-8.48			
412/12/98MW			-3.747	-0.09		22.47	14.73
388/11/98MW			-5.974	-2.32		7.22	-0.57
417/1/99MW			-6.825	-3.17		-1.45	-9.26
421/1/99MW			-6.76	-3.10		-0.23	-8.04
376/11/98MW			-6.212	-2.55		1.09	-6.72
419/1/99MW			-6.808	-3.15		-2.94	-10.76
410/12/98MW		-8.388	-4.544	-0.89		16.43	8.67
427/1/99GO			-6.596	-2.94		0.16	-7.65
425/1/99GO			-4.09	-0.43		20.42	12.67
429/1/99GO			-6.228	-2.57		4.73	-3.07
422/12/98GO			-3.553	0.11		25.05	17.72
377/11/98GO			-6.503	-2.84		-0.97	-8.78
414/12/98GO			-5.17	-1.51		14.43	6.66
408/12/98MW			-5.121	-1.46		13.59	5.82
428/1/99GO			-6.42	-2.76		1.81	-5.99
113/1/98MW			-7.094	-3.44		-4.33	-12.15
407/12/98MW			-5.083	-1.42		12.64	4.87
393/11/98MW			-5.279	-1.62		11.64	3.86
416/1/99MW			-6.904	-3.25		-1.87	-9.69
387/11/98MW			-6.06	-2.40		6.01	-1.7
	1	1	0.00		l	5.01	1.7

#	#	#	#	#	#	
5CC	8 HRS			d18-0		
			12 110	smow	12 10025	
			-12.119	-0.32	-12.10023	
			-12.00	-8.40		
			-12.133	-8.33		
			12.007	0.47		
142/2/98MW			-7.309	-3.71		
234/4/98GO			-7.734	-4.13		
363/10/98MW			-6 607	-3.01		
88/12/98MW			-7.468	-3.87		
312/8/98GO			-7.282	-3.68		
119/01/98			-8 152	-4 55		
141/2/98MW			-7 417	-3.82		
2/2/98MW			-8.025	-4 42		
303/8/98GO			-7 215	-3.61		
184/4/98GO			-8 031	-4 43		
77/12/97MW			-7 468	-3.87		
19/4/98GO			-7. 4 00	-3.07		
105/01/98			-0.515	-4.91		
129/2/98GO		12 057	-7.900	-4.37	5.04	
364/10/98MW		-12.957	-0.703	-5.10	-5.04	
366/10/08G0			-0.933	-3.33		
128/1/08GO			-0.997	-3.40		
128/1/9800			-0.001	-2.40		
140/2/9800			-1.243	-3.04		
μ	щ	4	Щ	4	Ш	
#	#	#	#	#	#	
500	0 1100			110.0		
500	8 HKS			d18-O smow		
			-12.226	-8.54	-12.182	
			-12.222	-8.54		
			-12.137	-8.46		
			-12.143	-8.46		
102/1/98GO			-8.549	-4.87		
132/2/98GO			-8.428	-4.75		
302/8/98MW			-4.612	-0.93		
250/4/98KGM			-7.887	-4.21		
357/10/98MW			-6.997	-3.32		
290/7/98MW			-7.247	-3.57		
		l		1		

115/1/98MW			-8.178	-4.50		
330/8/98GO			-0.308	3.37		
266/5/98GO			-8.241	-4.56		
180/4/98MW	<u> </u>		-8.646	-4.96		
171/3/98MW			-7.367	-3.69		
168/3/98GO			-7.667	-3.99		
186/4/98MW			-8.426	-4.74		
320/8/98MW			-0.609	3.07		
349/9/98GO			-7.075	-3.39		
282/5/98GO			-7.854	-4.17		
347/9/98GO		-9.161	-7.117	-3.44	-3.36	
277/5/98GO			-7.496	-3.81		
85/12/98GO			-7.878	-4.20		
206/4/98GO			-8.066	-4.38		
#	#	#	#	#	#	
5CC	8 HRS			d18-O		
			12 226	smow	12 044	
			-12.220	-0.00	-12.044	
			-12.222	-0.00		
			-12.137	-0.59		
			-12.044	-8.50		
2:41/4/98KG			-7 263	-3.72		
426/1/99MW			-7 1/1	-3.60		
295/7/98MW			-6 921	-3.38		
153/03/98GO			-7 448	-3.90		
351/10/98GO			-6 969	-3.43		
162/3/98MW			-7 128	-3 58		
161/3/98MW		-12,392	/.120	5.50		
269/05/98MW		-11.869				
279/5/98MW		-6.534				
178/4/98MW	gauging	-12.78				
242/0/081434	station	(902				
343/9/98IVI W	station	-6.802				
273/5/98MW	gauging	-24.463				
100/1/98MW	gauging	-14.486				
55/12/0700	station		7 705	1 25		
55/12/9/00	station		-1.195	-4.23		
115/1/98MW	Mbale spring		-8.237	-4.69		
19/11/97MW	nyaruhunga		-6.866	-3.32		
72/12/97MW	spring ngonya		_7 082	_3 5/		
	spring		7.002	5.54		

#	#	#	#	#	#	
5CC	8 HRS			d18-0		
			10.054	smow	10.041	
			-12.374	-8.51	-12.361	
			-12.348	-8.49		
241/4/98KG			-7.474	-3.61		
426/1/99MW			-7.296	-3.44		
295/7/98MW			-7.102	-3.24		
153/03/98GO			-7.621	-3.76		
351/10/98GO			-7.215	-3.35		
162/3/98MW			-7.369	-3.51		
161/3/98MW		-12.392	-7.282	-3.42		
269/05/98MW		-11.869	-7.376	-3.52		
279/5/98MW		-6.534	-7.672	-3.81		
178/4/98MW	gauging station	-12.78	-7.776	-3.92		
343/9/98MW	gauging station	-6.802	-7.128	-3.27		
273/5/98MW	gauging station	-24.463	-7.47	-3.61		
100/1/98MW	gauging station	-14.486	-8.505	-4.64		
55/12/97GO	gauging station		-7.956	-4.10		
115/1/98MW	mbale spring		-8.403	-4.54		
19/11/97MW	nyaruhunga spring		-7.085	-3.22		-10.36
72/12/97MW	ngonya spring		-7.253	-3.39		-11.84
			-8.903	-5.04		
			-7.219	-3.36		
Lab. No.	Sample No.	Volume(ml)	Sediment in (gm)	Sediment conc. in (mg/L)	$Q (m^3/s)$	
----------	-----------------	------------	------------------	--------------------------	-------------	
1.	99/1/(at Luiche	515	0.0093	18.06		
	Bridge,19/1/99					
2.	99/1/75Mw	300	0.5645	1881.67	0.48	
3.	98/12/61Mw	330	0.3679	1114.85		
4.	98/5/43Mw	330	0.0573	173.64		
5.	98/5/45Mw	310	0.0611	197.10		
6.	98/12/65Mw	310	0.2622	845.81		
7.	98/4/27Mw	270	2.1186	7846.67	1.417	
8.	98/4/38Mw	250	0.3349	1139.60		
9.	98/4/25Mw	270	2.3266	8617.04		
10.	98/4/26Mw	400	3.4679	8669.75	1.417	
11.	98/1/18Mw	550	0.8929	1623.45	1.417	
12.	98/4/37Mw	40	0.3301	8252.50		
13.	98/12/64Mw	360	0.3422	950.56		
14.	98/12/66Mw	330	0.2818	853.94		
15.	98/1/21Mw	520	2.4564	4723.85		
16.	98/12/62Mw	530	0.3461	653.02		
17.	97/12/10Mw	590	0.0460	77.97		
18.	97/12/06Mw	590	0.0989	167.63		
19.	97/12/12Mw	530	0.0445	83.96		
20.	97/12/11Mw	710	0.0667	93.94		
21.	97/12/08Mw	710	0.0148	20.85		
22.	98/1/24Mw	1370	2.4418	1782.33		
23.	97/12/02Mw	275	0.7988	2904.73		
24.	97/12/01Mw	800	2.6301	3287.63		
25.	98/1/22Mw	1495	9.7215	6502.68		
26.	98/12/63Mw	310	0.3780	1219.35		
27.	98/1/23Mw	1560	11.0164	7061.80		
28.	98/4/39Mw	345	1.2598	3651.59		
29.	98/1/19Mw	1206	5.4712	4536.65		
30.	98/04/33Mw	330	0.0597	180.91		
31.	98/12/67Mw	280	1.6971	6061.07		
32.	98/1/16Mw	540	1.3048	2416.30		
33.	98/1/17Mw	650	1.0454	1608.31		
34.	98/12/68Mw	360	1.8989	5274.72		
35.	98/12/69Mw	345	1.9546	5665.51		
36.	99/1/74Mw	355	1.1437	3221.69		
37.	98/5/44Mw	360	0.0760	211.11	0.480	
38.	99/1/73Mw	345	1.9379	5617.10		
39.	98/1/20Mw	530	9.2985	17544.34	0.480	
40.	98/4/32MTtz	300	0.0486	162.00		
41.	97/12/03Ngy	280	0.1747	623.94		
42.	97/12/04Mw	560	0.0658	117.50		
43.	97/12/07Mw	560	0.0562	100.38		
44.	98/1/15Mw	600	0.2413	402.17		
45.	98/1/13Mw	230	0.1058	460.00		
46.	97/12/05Mw	580	0.0654	112.76		
47.	97/12/04Mw	840	0.0680	80.95		
48.	98/10/60Mw	300	0.0685	228.33		
49.	99/1(17/1/99,	300	0.0040	13.33		
	1/2of1.55)					
50.	98/5/47Mw	305	0.0075	24.59		
51.	98/4/40Mw	350	0.0252	72.00	0.375	
52.	98/5/46Mw	315	0.0120	38.10		

Appendix 6: RESULTS FOR STREAM SUSPENDED SEDIMENT LOAD

53.	98/7/43Mw	280	0.0056	20.00	
54.	98/7/44Mw	255	0.0029	11.37	
55.	98/12/42Mw	300	0.0199	66.33	0.375
56.	98/10/56Mw	245	0.0021	8.57	0.101
57.	98/4/34GoTz	230	0.0038	16.52	
58.	99/1(17/1/99,	300	0.0085	28.33	
	5/6of 1.55m				
	from Right				
	Bank				
59.	98/10/57Mw	270	0.0029	10.74	0.101
60.	98/04/29Mw	300	0.0682	227.33	
61.	98/4/41GOTz	350	0.0167	47.71	0.375
62.	98/9/53Go	330	0.0056	17.00	0.059
63.	98/9/49Mw	260	0.0024	9.23	
64.	98/5/48Mw	260	0.0053	20.38	
65.	98/04/30Mw	280	0.0139	49.64	
66.	98/9/50Mw	250	0.0024	9.60	
67.	98/4/36Mw	280	0.0016	21.79	
68.	98/10/58Mw	280	0.0810	289.29	
69.	98/12/59Mw	222	0.0153	68.92	
70.	98/04/31Mw	266	0.6483	2437.22	
71.	98/12/58Mw	250	0.0119	47.60	
72.	98/7/46Mw	276	0.0036	13.04	
73.	98/7/45Mw	309	0.0040	12.94	
74.	98/04/28Mw	238	0.1380	579.83	
75.	98/12/60Mw	239	0.0129	54.00	
76.	98/9/51Mw	235	0.0028	11.92	
77.	98/10/55Mw	352	0.0056	15.91	0.101
78.	98/10/59Mw	220	0.0674	306.36	
79.	98/9/52Mw	298	0.0025	8.39	0.059
80.	99/1(17/1/99,	270	0.0062	22.96	
	1/6 of 1.55mm				
	from left bank				
81.	98/9/54Mw	320	0.0032	10.00	0.059
82.	98/7/47Mw	10	0.0017	170.00	
83.	98/7/48Mw	250	0.0010	4.00	

Locality	Sample No.	Results in oxides percent (%)					
		Al ₂ O ₃	CaO	Fe ₂ 0 ₃	K ₂ O	MgO	
Mwamgongo	99/1269	13.740	0.379	6.057	2.134	1.464	
Ngonya Jan/Dec	99/1270	4.988	0.207	2.343	1.090	0.694	
Ngonya Apr	99/1271	10.370	0.475	5.075	2.086	1.392	
Locality	Sample No	MnO	Na ₂ O	P ₂ O ₅	SiO ₂	TiO ₂	
Mwamgongo	99/1269	0.112	0.057	0.229	59.760	0.941	
Ngonya Jan/Dec	99/1270	0.039	0.046	0.072	83.390	0.423	
Ngonya April	99/1271	0.091	0.061	0.191	67.330	0.891	
Locality	Locality Sample Elements determined (mg/ kg)						
	No.						
		Ba	Be	Ce	Cr	Cu	
Mwamgongo	99/1269	348.4	2.4	112.0	93.8	18.7	
Ngonya Jan/ Dec	99/1270	144.6	1.1	45.6	49.7	9.2	
Ngonya April	99/1271	308.0	2.3	112.3	92.2	20.4	
Locality	Sample No.	La	Nb	Ni	Sc	Sr	
Mwamgongo	99/1269	63.6	70.8	50.9	10.2	56.7	
Ngonya Jan/Dec	99/1270	27.6	39.6	36.4	4.1	32.9	
Ngonya April	99/1271	65.5	69.4	46.3	9.6	65.2	
Locality	Sample No.	V	Y	Zn	Zr		
Mwamgongo	99/1269	70.5	31.4	44.9	282.8		
Ngonya Jan/Dec	99/1270	14.8	15.0	21.0	202.4		
Ngonya April	99/1271	77.8	31.5	48.0	281.1		

Appendix 7: Sediment Chemical Data from ICP analysis